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Abstract—A user-friendly yieid criterion was proposed by Hill in 1993, which utilizes five independent material
parameters in representing the yield locus. In the present investigation, an attempt is made to analyze forming
limits in sheet metals based on this yield criterion and the M-K approach. Comparison of the predicted results
with experimental data indicates that Hill's 1993 yield criterion is able to characterize the localized necking of
both aluminum and AK steel. A parametric study is carried out to investigate the influence of material
parameters (7o, 4o, 0o, T4, and 0,) on forming limits, which shows that the shape of the yield locus has
a significant influence on limit strains. € 1998 Elsevier Science Ltd. All rights reserved
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NOTATION

a, b subscript for uniform region and groove
¢, p, g non-dimensional parameters in Hill’s yield function
To, Fas. Foo  ratios of transverse to through thickness strains under uniaxial tension at 0°, 45° and 90° to the rolling
direction
r ratio of transverse to through thickness strains of planar isotropic materials
!

tg, ¢ Initial and current thickness of the sheet
A, B, C disposable parameters
K, n, m constant, strain hardening exponent, rate sensitivity exponent in constitutive equation
M exponent in Hill's 1979 yield criterion

fo factor for initial non-homogeneity
2 ratio of yield stresses of uniaxial tension at 0” and 90° to the rolling direction (oy/a4¢)
a; ratio of uniaxial tension yield stress in 0° direction to biaxial tension yield stress (o¢/05)
oy, 0, yield stresses under biaxial tension and uniaxial tension
gy, 099 yield stresses under uniaxial tension at 0” and 90° to the rolling direction
dey, de,y, des  increments of strain components
&;, &, components of strain rate
a., £, & effective stress, effective strain rate and effective strain
6., 0; stress components
®, p ratio of strain increments (de,/de,) and ratio of stresses (¢,/a,)
£, A initial strain and finite difference symbol

INTRODUCTION

Forming limit diagrams (FLDs) are affected by the shapes of yield surfaces. Since a method of
calculating the FLDs was proposed by Marciniak and Kuczynski [ 1] and Marciniak et al. [2], much
work has been focused on forming limit analysis using Hill’s 1948 quadratic yield criterion [3].
Reasonable correlation between experimental data and this theory have been found for aluminum-
killed steel with r-values between 1 and 2 [4]. The analyses with this criterion show that the position
of forming limit curves depends on the initial non-homogeneity, strain hardening exponent n, and
rate sensitive exponent m. The shape of forming limit curves for the stretching operation, on the
other hand, is affected by the r-value and somewhat by m. With an increase of r-value, the forming
limit strain is predicted to decrease significantly [5-7]. Experimentally, however, the dependence of
limit strain on the r-value is not observed to be as pronounced as the theory predicts [2, 8].
From Hill’s 1948 theory, the relationship between the yield stress under balanced biaxial tension

and the yield stress under uniaxial tension, g, = \/ (r + 1)/20,, may be obtained. According to this
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relationship, the yield stress under biaxial tension should be less than the yield stress under uniaxial
tension for r-values less than unity (such as aluminum). However, experimental data [9] show that
the biaxial tension yield stress of some aluminum is higher than the uniaxial tension yield stress,
a phenomenon known as “anomalous behavior” of aluminum.

In 1979, Hill proposed a second criterion of anisotropic plasticity and gave four simplified forms
for planar isotropic sheet metals {10]. All the four forms are able to describe the anomalous
behavior. Using this criterion, Parmar and Mellor [7] predicted much lower forming limits for
r-values less than that with Hill’s 1948 criterion. Lian et al. [11] investigated the range of the
applicable stress exponent M in the four simplified forms of this criterion. They pointed out that the
yield locus of the fourth form remains convex as long as M is larger than unity while the other three
forms have a narrower range for M. By comparing with experimental data, Kobayashi et al. [12]
concluded that the stress exponent M varies with accumulated strain. If a fixed value of M is used, it
may cause a discrepancy between the predicted yield locus and the experimental one.

Since the shape of the yield surface has a significant influence on the predicted forming limit
strains for stretching operations and sheet metals may have different yield surfaces due to their
physical characteristics [13], numerous anisotropic yield criteria have been postulated. For example,
Hosford [ 14] proposed a yield function based on the upper bound Bishop and Hill analysis [15,16].
Although the form of the Hosford yield function may coincide with Hill’s 1979 yield function under
a special condition [10], the stress exponent M in Hosford’s yield function is independent of r-value
and has much higher values (of 6 and 8 for bee and fec metals, respectively). Based on this criterion,
Graf and Hosford [17,18] have shown that the r-value has much less an effect on predicted FLDs,
a result which shows agreement with experimental observation. To accommodate the anomalous
behavior of planar isotropic sheets, Bassani advocated a yield function with four independent
parameters [19] and Gotoh proposed a fourth-degree polynomial yield function [20]. Based on
Logan and Hosford’s yield function [21], Barlat postulated a yield function that involves shear
stress, which seems to be able to represent some characteristics of aluminum sheets [22, 23]. It may
be shown that in most of the above-mentioned criteria there exists a fixed relationship among the
r-value, the yield stress under uniaxial tension and the yield stress under biaxial tension (as we have
shown for Hill’s 1948 criterion). This restricts their application to some materials.

For some materials such as copper, the ratio r,/rqo may be far from unity, while ¢/0¢¢ may or
may not be equal to one. To deal with this type of sheet metal property, Hill proposed a user-friendly
yield function in 1993 [247]. In this criterion, there are five independent material parameters, thus
offering flexibility in representing the yield locus. This yield function has been used by Hill er al. to
model the plastic work contours of 70-30 brass in polar coordinates of stress. The function is shown
to agree well with experimental data [25]. The purpose of the present investigation is focused on the
application of this newly proposed criterion to forming limit analysis using the M-K method.
A parametric study is carried out to investigate the influence of the material parameters on forming
limits. Predictions based on the criteria proposed by Hill in 1993, 1979 and 1948 are compared with
experimental data and discussed

HILL’S USER-FRIENDLY YIELD CRITERION

The general form of the criterion proposed by Hill in 1993 [24] is

2
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In the above equations, g, is the yield stress under balanced biaxial tension, ¢, and g4¢ are yield
stresses under uniaxial tension at 0° and 90° to the rolling direction, respectively, and ro and rqq are
ratios of transverse to through-thickness increments of logarithmic strain under g, and g0,
respectively. It is noted that there are five independent material parameters ¢, G99, O, 7o, and
roo among which no presumed relationship is postulated. These parameters need be determined for
each material experimentally.

If for a given material the yield stresses at 0° and 90° to the rolling direction are the same, then Eqn
(1) will take the form

z o1 + qo
G%-(Z—%>0102+U%+{(p+q)—£‘l—'o—’u 0-10-2=O-5a (4)

b b

where @, is the yield stress under uniaxial tension, and p and g are given by
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Equations (5) and (6} are different from Eqns (18) and (19) in Hill’s original paper in which r, and
rgg in the numerators are missing.

If two parameters o, and a, are introduced so that g, = %040 and g, = a,0;, then Eqns (1}3)
may be written as

2 2
g ca.0 g poL + 4o, | 610,
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Equation (7) allows for the investigation of the influence of parameters &, o, 1y and ryo on the
yield locus in a co-ordinate system of normalized stresses g,/04 and ¢,/0,. For planar isotropic
materials, the effect of r-value on the yield locus is shown in Fig. 1 where a, and o remain unity.
With an increase of r-value, the yield locus becomes more rounded. Figure 2 shows the influence of
9o on the yield locus while other parameters remain constant. A higher value of rq, shifts the locus
in the 90° direction. Figure 3 demonstrates the effect of o, on the yield locus. It is observed that
a decrease in o, leads to an increase in the yield stress under biaxial tension. The yield locus moves
outward in the 45° direction. Figure 4 shows the effect of a, on the yield locus. For a clear illustration
of the influence of o, on the yield locus and for the sake of comparison with predicted FLDs, o, in
Figure 4 is set to be 0.9. Since for a fixed g, a decrease in o, indicates an increase in gy, the yield
locus is pushed outward in the 90° direction.
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Fig. 1. Influence of planar isotropic r-value on yield locus.
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Fig. 2. Influence of anisotropic strain ratio ry, on yield locus.

APPLICATION OF THE HILL CRITERION TO FORMING LIMIT ANALYSIS

Since this criterion only involves two principal stresses which are acting along in-plane orthot-
ropic directions, it is applicable to analysis of the right-hand side of forming limit diagram. To
analyze the left-hand side of FLDs, the yield criterion needs to include shear stress. Otherwise,
assumptions on the direction of principal stresses inside the inhomogeneity of the sheet would have
to be made. In the present work, only the right-hand side of the FLD will be discussed.

Under the condition of biaxial tension, the groove will be perpendicular to the ¢, direction as
shown in Fig. 5. The equilibrium and deformation compatibility conditions between the groove and
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Fig. 3. Effect of parameter %, on yield locus.
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Fig. 4. Effect of parameter o, on yield locus.
the outside region are
Oiala = O1plp, (10)
dezg = deg, (1)

where subscript “a” and “b” denote the uniform region and the groove, respectively. From the
definition of logarithmic strain, the thickness of the sheet can be expressed as

t = toexples). (12)
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Fig. 5. Schematic of the groove.

Combining Eqn (10) with Eqn (12), the equilibrium equation becomes

014€XP(€3a) = fo 015 €XP(e3p), (13)
where f, = tos/to, is the initial non-homogeneity factor. The effective stress and effective strain rate
are defined as

O",é: = O‘lél + Uzéz
(14)
=a&(1 + ap),
where o = 6,/0, is the stress ratio, p = §,/¢, is the strain rate ratio, and o, is chosen as effective
stress, that is g4 = o,.
From the flow rule, the strain rate ratio is obtained as

_é_g _ 2230, — agcay + o((p + q) — ap((poy + 2q0,)/00))o,

== (15)
&1 201 —ogcay + 20((p + ) — 4, ((2po + q0,)/04))0,
From the definitions in Eqn (14) and volume constancy, strain increments may be given by
opdé

dey = ————, 16

b (1 + ap) (16)

de, = pde,, (17)

dey; = —de (1 + p). (18)

To facilitate the analysis, isotropic strain hardening is assumed and the constitutive equation is
selected in the form of the power law

o, = Kigy + )™ (19)

By rearranging the yield function (Eqn (7)), the following equation for normalized stress 0,/0y:
3 2
A(ﬂ) +B<9> +1=0 (20)
Tg Gy

A = apopx(p + qu),

is obtained, where

21)
B= —(1+ad® +(p +q — c)aog).
From Eqn (15), the normalized stress may also be expressed as
_ 01 _2p —axd) +(p + g — c)(pz — g 2

oo ((Zp + qu)ap — (p + 2q0)) o0t
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Combining Eqn (20) with Eqn {22) finally results in the governing equation for stress ratio and
strain rate ratio:

AC?® + BC? +1=0. (23)

Equation (23) involves the two variables « and p. Once strain rate ratio p is given, stress ratio a can
be solved for, and then C is determined using Eqn (22). For the right-hand side of the FLD, the value
of o is between a, and «,, with the two limiting values corresponding to plane strain and balanced
biaxial tension. The range of p is normally within 0 and 1. However, Eqn (23) is a highly non-linear
equation. There may exist more than one solution for a given value of p. In order to find the correct
solution, the following steps are used:

(1) Solve Eqn (23) and find all solutions of « between %, and «,.

(2) Eliminate solutions corresponding to negative C.

(3) For solutions with positive C, p is subjected to a small positive perturbation Ap. Solve
Eqn (23) again and compare

g1 a;

a2t

e o

... 01
with —
p+Ap To

3
p

0o p+Ap Jo
then « is the correct solution for the given value of p.
Since 6,/0, is determined from Eqn (23), Eqn (13) may be written as

(01/00)a _ £y expless — £31) (80 + 51,)" <£—?>m (24)

(@1/00) g+ &) \&

The above equation is the equilibrium equation that needs to be solved under the condition of
Eqns (4) and (23). For this purpose, a numerical procedure similar to that used by Graf and Hosford
[18] is employed. Equation (24) is thus changed to the form

eXP(€32)(01/00)al€s + AZ)" (A8,)"™ = fo €XP(e35)(01/00)s(Es + A&,) (AG)™ (25)

Equations (4), (23) and (25) constitute a non-linear system of equations. To solve these equations
simultaneously, the following procedure was used:

(1) Impose a strain increment Agy, inside the groove.

(2) Assume a strain rate ratio p, outside the groove, and use Eqns (22) and (23) to determine C,
and «,.

(3) Select a strain increment Ae,,, calculate the left-hand side of Eqn (25) and use Eqn (4) to
calculate the strain rate ratio p, in the groove.

(4) Solve Eqn (23) to obtain a,, and calculate the right-hand side of Eqn (25).

(5) Check if the left-hand side is equal to the right-hand side in Eqn (25).

(6) Adjust Ae;, and repeat steps (3) through (5) until both sides of Eqn (25) match.

(7) Update total strains

E=1¢+ A8,
&3 = €3 + Ags,
where
AE = (1 + ap)CAeg,,
Aey = — Ag (1 + p).

(8) Impose another strain increment Ag,,, repeat steps (3}{7) until A¢,,/Ae,, approaches a small
number which was selected to be 0.15 in the calculation since numerical tests indicated that
a number less than this value has little effect on the accuracy of calculated results.

RESULTS AND DISCUSSION

A comprehensive investigation into the forming limits of aluminum alloy 6111-T4 has been
conducted by Graf and Hosford [26]. Their experimental data served as a basis for comparison with
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the theory presented in this paper. The comparison is shown in Fig. 6, where average values of
experimental data for n, rog, ro and o, were used in the calculation. Since under the condition of
near-biaxial tension ridging affects failure, and necks occur parallel to the rolling direction [26], the
initial non-homogeneity factor f;, for the groove parallel to the rolling direction (RD) is chosen to be
less than that for the groove parallel to the transverse direction (TD). Experimental data [26] show
a negative rate sensitivity exponent ( — 0.003 ~ — 0.004) for Aluminum 6111-T4. To facilitate
analysis, however, the rate sensitivity exponent is chosen as zero in the calculation. By assuming that
the as-received material has not been prestrained, the initial strain in Eqn (19) is neglected in the
present analysis. Crystal plasticity analyses indicate that the minimum value of a, is 0.847 [27].
Thus, 0.9 was deemed representative for «; in the analysis due to lack of relevant experimental data.
It is shown in Fig. 6 that the predicted FLDs (solid lines) give agreement with experimental data,
where the dots represent strains measured on circles for which necking was noted, while the open
circles represent strains measured on neck-free circles [26]. It is observed that the predicted forming
limit strains follow the experimental data closely for the case when the major strain is parallel to the
transverse direction. However, it can be shown that if a value lower than 0.9 is used for a;, the
predicted forming limit strains will coincide with experimental data more closely for the case with
the major strain parallel to RD.

The dash and long-dash lines in Fig. 6 represent the limit strains predicted using Hill’s 1993
criterion for the case of planar isotropy. The r-value is assumed to be the same as 7, and rq,, for o,
parallel and perpendicular to the rolling direction, respectively. Predictions from Hill’s 1948 yield
criterion and the fourth form of Hill’s 1979 yield criterion are also shown in the same figure (where,
the stress exponent M in Hill’s 1979 criterion is determined from the r-value and a,). Comparison
among the predictions from the three yield criteria shows that Hill’s 1993 criterion explains the trend
of experimental data for aluminum 6111-T4 best. Near biaxial tension limit strains predicted from
Hill’s 1948 and 1979 criteria are observed to give over- and under-estimates, respectively. It is noted
that other yield criteria, such as Hosford’s high exponent yield criterion [18], may also give
reasonable predictions of forming limits for aluminum alloys. However, comparison of Hill’s criteria
with criteria proposed by other researchers is beyond the scope of the present investigation.

Figure 7 compares the predicted limit strains with experimental data for AK steel [28]. Published
experimental results for AK steel differ considerably [5] due to the variations in sheet thickness and
material properties. Hecker’s data seem to provide higher limit strains than those of other published
data [5]. In the calculations, the values for n, oy, 7o, 790, and r are from Hecker’s tests [28]. The rate

Hill 1883, r,=0.65, 1,,=0.8
- - = = Hill 1993, r,=r,=0.65
== Hill 1993, r,=r,=0.8
————— Hill 1948, r=0.65
e Hill 1948, 1=0.8

~ - == Hill 1979, r=0.65
o Hl 1879, r=0.8

1,20.995 (o, IIRD)
01 420988 (c,LRD)
[ n=0.245,m=0.0
0.0 b1
0.00 0.10

Fig. 6. Comparison of predicted FLDs with experimental data of aluminum 6111-T4 sheet. The dots and
circles represent measured strains on neck-affected and neck-free strains circles [26]. Lines are the predicted
results.
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sensitivity exponent m (0.015) is selected within the range of experimental data [29]. Since Hill’s 1948
quadratic criterion is generally applicable for AK steel, experimental data as well as this criterion
serve as a basis for determining the value of «, as 0.85 [30]. It is observed that for Hill’s 1993 yield
criterion, limit strains predicted with an average r-value of 1.6 are lower than those predicted by
assuming that the material is in-plane anisotropic, This is due to the fact that r,5 is not involved in
Hill’s 1993 yield criterion when in-plane anisotropy is considered. Also plotted in the figure are the
limit strains predicted from Hill’s 1948 yield criterion and the fourth form of Hill's 1979 yield
criterion. It is observed that for AK steel, the difference among the predictions from these three
criteria are insignificant if compared with the predictions for aluminum in Fig. 6. In fact, if the value

of & is given by a critical value of . /2/(r + 1)(which is 0.877 with r equal to 1.6), Hill’s 1979 and 1993
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Fig. 10. Influence of anisotropic strain ratio roo on forming limit strains.

yield functions will reduce to Hill’s 1948 yield function. Since o, = 0.85 is close to this critical value,
the forming limit predictions from these three criteria should be expected to be similar as well,
To investigate the effect of material parameters on forming limits, the initial non-homogeneity
parameter fo, the n-value and the m-value are arbitrarily chosen as 0.99, 0.22 and 0.004, respectively
in the subsequent analysis. The low value of f, causes the calculated limit strain for the plane strain
condition to be lower than the n-value. Figure 8 shows the effect of the planar isotropic r-value on
the FLD. Due to the fact that the r-value is an independent parameter in Hill’s 1993 yield criterion,
its value exerts a significant influence on the shape of the yield locus (Fig. 1). As a result, the forming
limit strain is sensitive to the r-value although experimental data may not show the evidence for such
a r-value dependence. It is also observed that variations of the forming limit with the r-value
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contradicts the prediction by Hill’s 1948 yield criterion [7]. However, if an increase in the r-value
occurs simultaneously with a decrease in «;, (such as AK steel), the predicted forming limit would be
expected to decrease and follow the experimental data (Fig. 7). Figures 9 and 10 illustrate the
influence of ry and rqo on forming limit strains, where the orientation of the groove is perpendicular
to the rolling direction. It is interesting to note that r, influences the FLD less than rq,. However,
with increasing rg,, stretchability improves significantly in the 0° direction.

Figure 11 illustrates the influence of the parameter &, on the FLD. An increase in g, is equivalent
to a decrease in o, in comparison with ¢, (Fig. 3). This leads to a more rounded yield locus and
higher forming limits. Figure 12 shows that an increase in o results in a decrease in forming limits.
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Barlat [13] argues that the sharpness of the yield locus at the point of biaxial tension is a factor
controlling limiting strains. He used the ratio of yield stress under plane strain to yield stress under
biaxial tension (P = 0,/0,) to characterize the shape of the yield locus. Comparison of Figs 3 and
4 with Figs 11 and 12 indicates that the present analysis generally agrees with Barlat’s statement that
decreasing sharpness of the yield locus in the biaxial tension direction will promote larger limiting
strains. However, for Hill’s user-friendly yield criterion the parameter P proposed by Barlat does not
seem suitable for describing the sharpness of the yield locus in the biaxial tension direction since o, is
an independent parameter, see Fig. 4.

CONCLUSIONS

Forming limits in stretching operations are analyzed based on Hill’s 1993 user-friendly yield
criterion. A non-linear governing equation is derived to establish the relationship between strain rate
ratio and stress ratio under the condition of proportional loading. To find the correct solution to this
equation, a numerical perturbation technique is pursued, which is based on the characteristic of
stretching operations where the principal stress o, decreases when the deformation mode switches
from plane strain to balanced biaxial tension. Comparison of predicted forming limit strains with
experimental data shows that Hill's 1993 user-friendly criterion is applicable to both steel and
aluminum. Published experiments [31] revealed that the shape of yield loci is dependent on the
deformation history. In the present investigation, however, the stress ratios «, and a, are kept
constant during the deformation process, a situation where the yield locus expands in scale only but
not in shape. This may contribute to discrepancies between experimental data and predictions.
Analysis shows that the shape of the yield locus has a significant influence on limiting strains.
A flattened shape of the yield locus in biaxial tension permits high limiting strains in stretching,
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