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The differential geometric filter is implemented to estimate the absolute and relative positions of the spacecraft in a formation.
The extended Kalman Filter is also implemented as a benchmark for the differential geometric estimation. Only relative positions
between the spacecraft are measured. Relative positions are measured using a wireless local positioning system (WLPS) installed in
all spacecraft. Two different scenarios are studied: (1) the observations include WLPS measurements only and (2) the observations
include WLPS measurements in addition to measurements for the absolute position of one spacecraft made by a radar that takes
measurements from the earth’s surface. Results show that the differential geometric estimation has better stability performance
and a faster convergence rate compared to the extended Kalman filter.

1. Introduction

The relative and absolute positions estimation of spacecraft
formations is a fundamental task in many space missions.
Relative position estimation plays an important role in
Spacecraft Formation Flying (SFF) missions, a subject that
has been the focus of many researches during last decade.
Some SFF missions require that multiple spacecraft, in differ-
ent orbits, communicate without interruption, for example,
satellites in the CITRIS-COSMIC system are required to
communicate with each other to monitor the ionospheric
irregularities [1]. Relative positions between satellites, such
as Cluster and Cluster-II satellites launched by the European
Space Agency, are estimated and controlled to support many
collaborative tasks where satellites are required to maintain
a specific formation in a continuous manner within the
mission period [2].

Several relative position estimation methods have been
developed. A GPS-like technology that can be applied to
SFF have been introduced [3, 4], where each spacecraft is
equipped with a communication system to localize other
spacecraft in the formation. This system provides high preci-
sion estimates for relative positions. Yet, complex hardware is
required on each spacecraft. This system does not stand alone
and requires a GPS system.

A relative position and attitude estimation through a Vi-
sion-Based Navigation System (VISNAV) has been addressed
extensively in the literature [5–8]. The VISNAV consists of a
Position Sensing Diode (PSD) sensor and an array of LED
source beacons installed on a plate. The PSD detects the
energy of the light source emitted by the beacons. Then
the PSD generates a current flow to four terminals that are
installed on the PSD plate. At that point, the centroid of
the current flow is determined to measure the direction of
the energy source. The covariance study shows that the per-
formance could be affected by the relative distance between
spacecraft. The accuracy factors of the estimation depend on
the number of beacons installed on the spacecraft. Three or
more beacons are suggested to ensure the observability of the
system [5].

Psiaki proved the feasibility of estimating the orbits of
two spacecraft through measuring their relative distance, azi-
muth, and elevation angles [9]. The orbital elements estima-
tion accuracy depends on the relative distances between the
spacecraft. Only two spacecraft formations were considered.
As shown in [9], the relative position between spacecraft
impacts the estimation performance. In addition, the system
becomes unobservable in a few cases, such as zero inclina-
tion.
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Figure 1: WLPS signal transmission between DBS and TRX.

The extended Kalman filter (EKF) has been widely imple-
mented into the nonlinear system to estimate the relative and
absolute positions in SFF [5, 10–12]. The system nonlinearity
causes the EKF estimation to be sensitive to initial condition
errors, and the linearization step in the EKF may result in
estimation instability. The Unscented Kalman Filter (UKF)
has been implemented for relative attitude and position
estimation in SFF [13, 14]. The UKF has a better robustness
to initial condition errors compared to the EKF. However,
its computational complexity is higher than the standard
EKF. If compared to the standard EKF, the UKF has a faster
convergence rate, but the computational time required for
each update is longer than that of the EKF [15]. The Batch
filter [16], an offline filtering method, has been implemented
in [9] for absolute positions estimation using the relative
positions measurements. Both studies in [9, 12] show that
the configuration of the SFF affects the stability and the
accuracy of estimation.

The differential geometric (DG) theory has been widely
implemented in the control and guidance research area
[17, 18]. In calculus, the differential geometry represents
the linear approximation of a smooth curve [19]. References
[20, 21] introduced the differential geometric approach into
the missile tracking applications. In [20], the system model
is transformed from the arc length domain into the time
domain; then the guidance law is applied. Both papers have
shown the feasibility of implementing the DG for missile
guidance.

The differential geometric approach for nonlinear sys-
tems has been extended recently for the nonlinear estimation
purpose [22]. The DG estimation avoids the linearization
step in the EKF. In DG estimation, the nonlinear dynamics
are mapped to a linear domain, where a linear estimator
can be implemented. Then, the inverse transformation is
applied to the estimator [22]. Reference [22] details how the
DG estimation can be implemented when the number of
available measurements is too few to handle all the system
nonlinearities and shows that both the optimal control and
the linear filtering approaches can be applied in the mapped
linear domain.

In this paper, the DG filter is implemented in estimating
the spacecraft relative and absolute positions in formation.
While most of the developments in the literature focus on the
estimation of relative positions [3, 5], this paper estimates
relative and absolute positions of all spacecraft. The differ-

ential geometric (DG) estimation and the extended Kalman
filter (EKF) are implemented and compared for estimation
using wireless local positioning system (WLPS) measure-
ments. The WLPS installed on each spacecraft enables that
spacecraft to determine the relative positions of other space-
craft located in its coverage area via time-of-arrival (TOA)
and directional-of-arrival (DOA) measurements [12, 23, 24].

In this paper, two scenarios are considered: (1) observa-
tions include WLPS measurements only and (2) observations
include WLPS measurements in addition to the absolute
position of one spacecraft measured by radar systems
installed on the earth. Section 2 presents an overview on the
WLPS. Section 3 presents the orbit dynamics model. The
derivation of the DG Estimation equations for the problem
of relative and absolute positions estimation are presented
in Section 4. Section 5 presents the EKF implementation.
Section 6 discusses the simulation results and presents a
complexity analysis that compares the computational costs
between the DG filter and the EKF.

2. Wireless Local Positioning System (WLPS)

The WLPS consists of two basic components [12, 23, 24]: A
dynamic base station (DBS) and a transponder (TRX). Each
DBS is capable of localizing TRXs located in its coverage area
via TOA and DOA measurements, as shown in Figure 1. The
DBS periodically broadcasts an identification (IDR) signal
once every ID Request Repetition Time (IRT) as shown in
Figure 2. A TRX within the DBS coverage area receives the
IDR signal and transmits a response signal that includes its
own ID back to the DBS within the IRT period. The ID
of each TRX allows the DBS to distinguish one TRX from
another. It also allows the DBS to easily track multiple TRXs
located in its coverage area.

As shown in Figure 2, the range of a TRX is measured by
comparing the TOA of the signal from the TRX at the DBS
receiver and the time of the transmission of the signal from
the DBS transmitter. Here, it is assumed that the processing
time delay in the TRX is known. The processing time esti-
mate can be included in the signal packet transmitted from
the TRX to the DBS in order to allow the DBS to correctly
measure the range. The DBS, equipped with antenna arrays,
allows DOA estimation and beamforming. In addition,
beamforming enhances the performance of the DBS by
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Figure 2: DBS ID signal and TRX response signal in an IRT period.

reducing the interference effects [25]. The DOA is measured
by each spacecraft relative to its body fixed coordinate sys-
tem. In this paper, we assume that the attitudes of all space-
craft are known. Hence, all the DOA measurements can be
computed relative to a fixed reference frame.

Thus, a WLPS allows single node positioning. In other
words, each node equipped with a DBS can independently
localize the TRXs located in its coverage area and its field of
view (FOV). Now, if all spacecraft are equipped with both
a DBS and TRX, each spacecraft can find the position of
other spacecraft located in its FOV and coverage area. The
position information across multiple spacecraft can be fused
to improve the localization performance [26, 27].

3. System Model

In this section, the state and measurement models are de-
rived. Two sets of models are derived for two scenarios:
(1) only WLPS measurements are available and (2) WLPS
measurements and those taken by a tracking system (such
as a radar installed on the ground) are available. For the
first scenario, a four-spacecraft formation is considered. Each
spacecraft is equipped with both a DBS and a TRX. For the
second scenario, a two-spacecraft formation is considered;
one spacecraft is equipped with a DBS and the other
spacecraft is equipped with a TRX. The radar measures the
absolute range, the absolute azimuth, and elevation angles
of one spacecraft with respect to a ground station. Since
the position of the ground station is known, we assume the
absolute position measurement is expressed with respect to
earth center [28].

The estimated states are considered to be the spacecrafts’
absolute and relative positions and their velocities. If the
spacecrafts’ orientations are known, the WLPS measure-
ments can be expressed in the inertial reference frame.

3.1. State Model. We assume the spacecraft’s absolute posi-
tion in the Earth Centered Inertial (ECI) frame is [rx ry rz]

T ,

the velocity vector is [ṙx ṙy ṙz]
T , and the acceleration vector

is [r̈x r̈y r̈z]
T . The dynamic model of each spacecraft with

rii j

r j

ri

ith spacecraft
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Figure 3: Relative position vector between two spacecraft.

respect to the earth center, can be expressed using a two-body
model, which is given as [29]

r̈ = −μ
r3

r + w, (1)

where, μ is the Earth gravitational constant, and w is a zero-
mean gaussian acceleration uncertainty, and E[wwT] = Q;
here, E[·] refers to the statistical expectation operation. The
vectors r and r̈ are the absolute position and acceleration
of the spacecraft, respectively, and r denotes the absolute
distance of the spacecraft from the center of the Earth.

3.2. WLPS Measurements Model. In the first scenario, we
incorporate only WLPS measurements for localization. In
Figure 3, ri and r j represent the ith and the jth spacecraft
absolute position vectors expressed in an ECI frame. The
relative position vector of the jth spacecraft observed by the
ith spacecraft equipped with DBS, expressed in ECI frame, is

ri j = r j − ri, (2)

ri =
[
ri,x ri,y ri,z

]T
, (3)

r j =
[
r j,x r j,y r j,z

]T
. (4)
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In general, there are a maximum of 12 possible mea-
surement sets for a four-spacecraft configuration. Here, we
consider only four measurement sets in the paper: r12, r23,
r34, and r41. If the orientation of the spacecraft (u-reference
frame in Figure 3) is known, the relative position vector, Ri j ,
expressed in the ith spacecraft reference frame would be

Ri j = Diri j

=
[
Ri j,x Ri j,y Ri j,z

]T
,

(5)

where Di is the Directional Cosine Matrix (also known as
Attitude Matrix [16]) of the ith spacecraft relative to the ECI
frame. The relative distance between spacecraft i and j is a
scalar linear function of TOA, hTOA

i j , that is,

hTOA
i j =

∥∥∥ri j
∥∥∥

c

=
∥∥∥r j − ri

∥∥∥
c

,

(6)

where c is the speed of light, and ‖·‖ refers to the magnitude
of vector. The DOA between the two spacecraft is given by:

hDOA
i j =

[
ψi j

φi j

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
tan−1

(
Ri j,y

Ri j,x

)

tan−1

⎛⎝ Ri j,z√
R2
i j,x + R2

i j,y

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Here, ψi j is the relative azimuth angle, and φi j is the relative
elevation angle between the two spacecraft i and j. Using (6)
and (7), we can express the WLPS measurement between the
ith and the jth spacecraft as

ỹp,i j =
⎡⎣hTOA

i j

hDOA
i j

⎤⎦ + νp,i j , (8)

where νp,i j denotes WLPS measurement noise, which is as-
sumed to be zero-mean gaussian with E[νp,i jν

T
p,i j] = �p,i j .

Using (A.2) in Appendix A, the WLPS measurement vec-
tor in Cartesian coordinates is

ỹc,i j =
⎡⎢⎣ri j,xri j,y
ri j,z

⎤⎥⎦ + νc,i j . (9)

The new measurement noise νc,i j is a function of νp,i j , hTOA
i j

and hDOA
i j are defined in (8).

3.3. Radar System Model. In the second scenario, an addi-
tional radar system that measures the spacecraft range, azi-
muth, and elevation angles is included. It is assumed that the
ith spacecraft that is observed by the radar is also equipped
with a DBS. The absolute position measurement made by the
radar is

ỹr,i =
[
ρi λri ξri

]T
+ νr,i, (10)

where νr,i is radar system noise, which is assumed to be
zero-mean gaussian, and E[νrνT

r ] = �r . The ri is the
absolute distance of the ith spacecraft from the radar, λri
is the azimuth angle, and ξri is the elevation angle of ith
spacecraft with respect to a radar-fixed coordinate system.
The radar position is known in the ECI frame. So, using radar
measurements, it is straightforward to calculate the absolute
distance of the ith spacecraft from the earth’s center, ‖ri‖ and
the azimuth, λi, and elevation, ξi angles with respect to the
ECI frame. In this preliminary analysis, we will assume for
simplicity that we measure directly ‖ri‖, λi, and ξi. Azimuth
and elevation angles are related to the coordinates of the
spacecraft through

λi = tan−1 ri,y
ri,x

, (11)

ξi = tan−1 ri,z√
r2
i,x + r2

i,y

, (12)

where ri,x, ri,y , and ri,z are defined in (3).

3.4. Measurement Models for Simulation. In the first scenario,
only the linear filtering method presented in Section 4 will
be implemented. Four-spacecraft formation is required, as
discussed in Section 4.3. Thus, the measurement vector, ỹ is

ỹ ≡
[

ỹT
c,12 ỹT

c,23 ỹT
c,34 ỹT

c,41

]T
+ ν, (13)

where ν ≡ [νT
c,12 νT

c,23 νT
c,34 νT

c,41]T is the measurement noise
vector. The corresponding measurement noise covariance is
given as

�1 =

⎡⎢⎢⎢⎣
�c,12 03 × 3 03 × 3 03 × 3

03 × 3 �c,23 03 × 3 03 × 3

03 × 3 03 × 3 �c,34 03 × 3

03 × 3 03 × 3 03 × 3 �c,41

⎤⎥⎥⎥⎦. (14)

The �c,i j which denotes the relative position measure-
ment noise covariance in the ECI frame in (14) is given as

�c,i j = E
{(

ri j −DT
i νc,i j

)(
ri j −DT

i νc,i j

)T}
= DT

i �c,i jDi,
(15)

where �c,i j is the noise covariance of the relative position
measurement, expressed in cartesian coordinates, and Di is
the attitude matrix [16]. �c,i j is given as a function of �p,i j

[28]. The transformation from �p,i j to �c,i j is shown in
Appendix B.

For the second scenario, both the linear filtering method
and pole placement, which are presented in Section 4, will be
implemented for estimation purposes. Only two-spacecraft
formation is considered. The measurement vector ỹ is

ỹ ≡
[

ỹT
c,12 ỹT

r,1

]T
+ ν, (16)

where ν ≡ [νT
c,12 νT

r,1]T . The corresponding measurement
covariance matrix�2 is

�2 =
[
�12 03 × 3

03 × 3 �r

]
, (17)
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where �r = diag[σ2
ρ σ2

λ σ2
ξ ], which the “diag” represents the

diagonal matrix, and σ2
ρ , σ2

λ , and σ2
ξ are the measurement

noise variances for absolute distance, azimuth, and elevation
angle, respectively.

4. Differential Geometric Filter

DG estimation was recently extended to deal with nonlinear
dynamic systems with fewer measurements than required
to handle all nonlinearities [22]. DG estimation avoids
the linearization step encountered in the EKF. In the DG
estimation, the nonlinear system is transformed into a linear
system. The transformation requires the state vector, x, to be
expressed as a function of the measurements vector, y, that is
x = s(y).

The DG estimation developement is explained in [22]
and is briefed here for completness of presentation. The
system model for DG estimation is constructed by defining
a new state vector z such that the measurement vector y can
be expressed as a linear function of z

ż = Az + Bg(z) + Gw, (18)

y = Cz + ν. (19)

Here, A, B, C, and G are linear matrices, w is the process
noise, and ν is the measurement noise. The state equation
(18) includes a linear system, Az, and a nonlinear input
function, Bg(z).

When the available measurements are not enough to
handle the nonlinearities in the system, a set of pseudomea-
surements, z′, is required. The pseudo-measurements can be
obtained by taking the derivatives of y, that is, z′ = ẏ.

The pseudo-errors are defined as

e = z′ − ẑ′ (20)

Then, the estimated state vector, ẑ, that includes the
pseudomeasurements is

ẑ ≡
[

ŷT ˙̂y
T
]T = [ŷT z

′T
]T

. (21)

Letting m be the total number of measurements, (21)
shows that the size of the estimated state vector, z, is twice
the size of the measurement vector, n = 2m. In addition, it
can be shown that the time rate of change of the pseudoerrors
is [22]

̂̇e = Am+1,nê− − Lm+1,n
(

ỹ − ŷ
)
, (22)

where L is the gain matrix which will be presented in the next
section, and Am,n and Lm,n denote mth to nth row of the A
and L matrices, respectively.

In [22], two gain computation methods are presented,
which are the pole placement method and Kalman Filter (or
Linear Filtering) method.

4.1. Linear Filtering Gain. The state (18) is linear. Thus, the
Kalman Filter theory can be applied. Note that the input

function, g(z), is not used in the updating process in both
DG estimation and EKF. The DG estimation gain matrix, L,
is determined by

L = PCT
(
CPCT + R

)−1
, (23)

where P is the state covariance matrix corresponding to the
z vector, and R is the measurement noise covariance matrix.
Then, the state estimates, z, and its covariance are updated as
follows:

ẑ+ = ẑ− + L1,m
(

ỹ − ŷ
)
,

ẑ
′+ = ẑ

′− + Lm+1,n
(

ỹ − ŷ
)
,

P+ = (I − LC)P−,

(24)

where I is the identity matrix, the superscript − denotes
preupdate estimates, and the superscript + denotes postup-
date estimates. The ẑ′ denotes any estimated pseudomeasure-
ments vectors and the estimated state vectors that are not
observed by measurements. Lm,n denotes mth to nth row of
the gain matrix, L.

The DG estimation filtering process works as follows
[22]. The gain matrix, L, is determined using (23). Then
the estimated states and state covariance matrix are updated
using (24). The updated states and the pseudoerrors are
propagated by (18) and (22) with their respective input
function. The state covariance matrix is propagated using
(25)

Ṗ = AP + PAT + GQGT , (25)

where Q is the process noise covariance, which is defined as
Q = E{wwT}.

Both the A and G matrices in (18) and (25) are linear
time invariant matrices; thus, (25) can be expressed in time
discrete representation, which is given as

Pk+1 = ΦPkΦ
T + Q, (26)

where, subscript k and k+1 denote the current and next time
step, respectively, Φ is the state transition matrix, and Q is
the discrete-time process noise covariance. Both Φ and Q are
calculated as follows [30]. Let

A =
[−A GQGT

0 FT

]
Δt,

B = eA ≡
[
B11 B12

0 B22

]
,

(27)

where Δt is the time interval between two successive
measurements, eA is the exponential matrix of A matrix, and
F is the matrix representation of the system dynamic model.
For the nonlinear dynamic model case, for example, (1), F is
the first order Taylor series expansion (or Jacobian matrix) of
the dynamic model. Both Φ and Q are given as

Φ = BT
22,

Q = ΦB12.
(28)
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4.2. Pole Placement Method. Another filtering method pre-
sented in [22] is the pole placement method. The pole place-
ment method has been widely used in controls and estima-
tion. Unlike the Kalman filter, the gain, L, in pole placement,
does not change dynamically. Pole placement also requires
full system observability. However, the pole placement meth-
od guarantees the linearity of the measurement model, and
hence guarantees stability.

The pole placement gain matrix L is computed as follows.
Given that the A matrix has n×n dimensional and canonical
form as the following:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ (29)

and C matrix has n × m dimensional. The system is
considered to be fully observable if the rank of O(C,A)
matrix is full rank [31] as the following:

O(C,A) =

⎡⎢⎢⎢⎢⎢⎢⎣
C
CA
CA2

...
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎦ (30)

If the full rank observability condition in (30) is fulfilled,
the gain matrix L is calculated using the following equation:

λ = eig(A− CL), (31)

where λ is the eigenvalue vector, and eig represents the
eigenvalue.

If a set of eigenvalues are given, the gain matrix L can be
computed using the Ackermann’s formula [16]. The selection
of the eigenvalues impacts both stability and accuracy of
estimation. Therefore, negative eigenvalues are always select-
ed to ensure the stability of the estimation process.

Here, our goal is to set up the DG estimation filter for the
two scenarios introduced in Section 3. For the first scenario,
only the WLPS measurement is available while we intend to
estimate the spacecraft absolute position. Thus, it is required
to derive the expression of absolute position of spacecraft
in terms of relative position. For the second scenario, an
additional absolute position measurement of spacecraft is
included.

4.3. Scenario One—Relative Position Estimation with WLPS-
Only Measurement. The absolute distance of a spacecraft j
from the Earth’s center is

r2
j = r2

i + r2
i j + 2rTi jri, (32)

where ri and ri j denote absolute and relative positions, res-
pectively, defined in (2) to (4).

The orbital equation of spacecraft is [29]

r = a
(
1− ε2

)
1 + ε cos θ

. (33)

In (33), r represents the distance of spacecraft to the
earth’s center, a is the semimajor axis, ε is the eccentricity,
and θ is the true anomaly. In this scenario, it is assumed that
all spacecraft in the formation have the same semimajor axis,
eccentricity, and true anomaly. Hence, (33) shows that the
distances from all spacecraft to the earth’s center would be
the same. In this case, r j = ri, leads to

r2
i j + 2rTi jri = 0. (34)

If we consider a four-spacecraft configuration, then (34)
can provide a closed form solution for absolute positions
using relative position measurements. For example, the abso-
lute position of spacecraft 1 can be obtained from

⎡⎢⎣r12,x r12,y r12,z

r13,x r13,y r13,z

r14,x r14,y r14,z

⎤⎥⎦
⎡⎢⎣r1,x

r1,y

r1,z

⎤⎥⎦ = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r2
12

2

r2
13

2

r2
14

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

Here, ri,x, ri,y , and ri,z and ri j,x, ri j,y , and ri j,z are the absolute
and relative position elements introduced in (2), respectively.
The right hand side of (35) is the square of relative distances
between the spacecraft. Similarly, we can determine the abso-
lute positions of the other spacecraft. Note that the solution
in (35) requires the computation of inverse of the relative
position measurements matrix. Therefore, the closed form
solution needs an accurate estimation or unbiased relative
position measurements.

Consider the four sets of WLPS measurements men-
tioned in Section 3 where the total number of measurements,
m, in (13) is 12. However, there are 24 states to be estimated;
thus, at least 12 pseudomeasurements are required. The
pseudomeasurements are defined as the relative velocities.
Using the dynamic motion of spacecraft defined in (1), the
relative accelerations between spacecraft are

r̈i j = μri
r3
i

− μr j
r3
j

. (36)

When all spacecraft in the formation have the same
semimajor axis, a, eccentricity, ε, and true anomaly, θ, at all
times, (36) can be simplified to.

r̈i j = −
μri j
r3

. (37)

The nonlinear input function, g(z), in (18) is defined
as a function of measurements, ỹ, and pseudomeasurement,
z′. The only nonlinear function of the dynamic system
in this scenario is the relative acceleration introduced in
(37). Therefore, the input function consists of the relative
acceleration between the spacecraft, which is

g
(

ỹ, z′
) = [−μrT12

r3
−μrT23

r3
−μrT34

r3
−μrT41

r3

]T

, (38)

where z′ is the pseudomeasurements vector defined in (20),
which can be written as z′ = ẑ′ + e.
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Equation (38) depicts that the absolute range of space-
craft that is required for the relative dynamic model. Equa-
tion (35) determines the absolute position using relative po-
sition measurements. However, (35) is vulnerable to the error
in ri j , which could result in a large estimation error in the
absolute range, r. Then, we consider two additional pseu-
domeasurements which are the absolute range and eccentric
anomaly, E. The rate of change of absolute range is [29]

ṙ = aε sinEĖ, (39)

where a and ε were defined in (33). The rate of change of
eccentric anomaly is:

Ė =
√

μ

a

1
r
. (40)

Substituting (40) into (39), we obtain the expression of
ṙ in terms of eccentric anomaly and range only. Adding (39)
and (40) into the input function, g(ỹ, z′) in (38), we obtain

g
(

ỹ, z′
)

=
[
−μrT12

r3
−μrT23

r3
−μrT34

r3
−μrT41

r3
√
μaε

sinE

r

√
μ

a

1
r

]T

.

(41)

Then, the estimate state vector, z is

z =
[

r12 r23 r34 r41 ṙ12

ṙ23 ṙ34 ṙ41 r E
]T

.
(42)

The linear matrices A, B, and G in (18) associated with
state models in (41) and (42) correspond to

A =
[

012 × 12 I12 × 12 012 × 2

014 × 12 014 × 12 014 × 2

]
, (43)

B =
[

014 × 12 I14 × 14

]T
, (44)

G =
[

014 × 12 I14 × 14

]T
. (45)

For the WLPS-only measurement, the C matrix in (19)
associated with the measurement model in (13) is

C =
[

I12 × 12 012 × 14

]
. (46)

4.4. Scenario Two—Relative Position Estimation with WLPS
and Radar Measurement. Consider a radar tracks one of the
spacecraft in the two-spacecraft formation, for example, ith
spacecraft where i represents either spacecraft 1 or spacecraft
2. The absolute distance to the spacecraft is measured at all
times. Then, the range and eccentric anomaly pseudomea-
surements in (42) can be ommitted. Therefore, the state vec-
tor for the second scenario becomes

z =
[

rT12 ri λi ξi ṙT12 ṙi λ̇i ξ̇i
]T

, (47)

where, ri is the absolute range, λi is the absolute azimuth
angle, ξi is the absolute elevation angle, and ṙi, λ̇i, ξ̇i are their

time derivatives, respectively. Based on (47), the nonlinear
function are the relative acceleration and the acceleration in
terms of r̈i, λ̈i, and ξ̈i. Then, the modified input function,
g(ỹ, z′) is

g
(

ỹ, z′
) = [μrT1

r3
1
− μrT2

r3
2

r̈i λ̈i ξ̈i

]T

, (48)

where r̈i, λ̈i, and ξ̈i are the spacecraft polar accelerations,
which are the second order time derivatives of the absolute
range, absolute azimuth, and elevation shown in (10)-(11)
respectively. Their corresponding equations are

r̈i = riξ̇
2
i + riλ̇

2
i cos2ξi − μ

r2
i

, (49)

λ̈i = −2ṙiλ̇i
ri

+ 2λ̇iξ̇i tan ξi, (50)

ξ̈i = −2ṙiξ̇i
ri

− 2λ̇2
i cos λi sin ξi, (51)

where the first order time derivation of polar coordinate and
cartesian coordinate are presented in Appendix A.

In this case, the A, B, G, and C matrices for DG esti-
mation’s state and measurement models in (18) and (19), are

A =
[

06 × 6 I6 × 6

06 × 6 06 × 6

]
, (52)

B =
[

06 × 6 I6 × 6

]T
, (53)

G =
[

06 × 6 I6 × 6

]T
, (54)

C =
[

I6 × 6 06 × 6

]
. (55)

The process noises in the G matrix in (54) are assumed along
the acceleration axes only.

5. Implementation of Extended Kalman Filter

The standard EKF has been implemented for both scenarios.
The state model, (1), and the measurement models, (13) and
(16), correspond to the first and second scenarios, respec-
tively. In [12], the EKF has been derived for the WLPS-meas-
urements expressed in polar coordinates.

For n-number of spacecraft in the formation, the state
estimate vector for EKF is

x̂ =
[

rT1 rT2 . . . rTn vT
1 vT

2 . . . vT
n

]T
. (56)

For the first scenario, the measurement model is:

Hk1 =

⎡⎢⎢⎢⎣
−I3 × 3 I3 × 3 03 × 6 03 × 6

03 × 6 −I3 × 3 I3 × 3 03 × 6

03 × 6 03 × 6 −I3 × 3 I3 × 3

I3 × 3 03 × 6 03 × 6 −I3 × 3

⎤⎥⎥⎥⎦. (57)

For the second scenario, the linearized measurement
model is

Hk2 =
⎡⎣−I3 × 3 I3 × 3 03 × 6
∂hradar

∂r
03 × 3 03 × 6

⎤⎦, (58)
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where ∂hradar/∂ri is the jacobian of the three radar measure-
ment components introduced in (10) with respect to the ith
spacecraft absolute positions and velocities [28], which is
given by

∂hradar

∂r
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ri,x
ri

ri,y
ri

ri,z
ri

− sin λri
ri cos ξri

cos λri
ri cos ξri

0

− cos λri sin ξri
ri

− sin λri sin ξri
ri

cos ξri
ri

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(59)

where ri = [ri,x ri,y ri,z]
T and ri, λri, and ξri are defined in

(10).
Using the measurement noise covariance obtained in

(14) and (17) together with the linearized state and mea-
surement models, the EKF for relative position estimation is
implemented.

6. Simulation Results and Discussions

Simulations are conducted to study and compare the
accuracy and convergence performance between differential
geometric estimation and EKF. Two differential geometric
estimation methods discussed in Section 4 are implemented
in the simulation, which are the pole placement and the
linear filter. The accuracy performance measured is their root
mean square error (RMSE). Here, the mean square error
(MSE) is the average of the square of estimation error over
x, y, and z axes of spacecraft position. Thus,

RMSE ≡
∥∥r̂i − ri

∥∥√
3

, (60)

where r̂i is the estimated absolute position of the ith space-
craft, and ri is the true absolute position of the ith spacecraft.

The convergence rate is determined by the amount of
time required by the estimator’s RMSE to fall within a
RMSE threshold, ethres. The ethres is determined as the average
RMSE at the estimator’s RMSE steady state. In addition,
the complexity of DG Estimation and EKF are compared
through the number of multiplications required by each esti-
mator in an iteration.

In the simulation, all spacecraft are in low earth orbit
(LEO), with a semimajor-axis of 7000 km, the eccentricity
of 0.04, and 0 degree of initial true anomaly. The argument
of perigee (ARGPER), the Right ascension of the ascending
node (RAAN) and the inclination (INC) of each spacecraft
are specified in each scenario in order to meet the formation
configuration requirements.

The initial attitude of each spacecraft is constructed using
a euler angle with 3-1-3 orientation at periapsis [32]. The
first rotation is the spacecraft RAAN angle, followed by a
second rotation (inclination angle). Then, the third rotation
angle is 90 degrees for spacecraft 1, 3, and 4 and −90 degrees
for spacecraft 2. To ensure that one of the spacecraft reference
frame axes points toward the center of the Earth at all times,

all spacecraft are set to rotate at a constant angular velocity,
which is, ωi = [0 0 ω]T . Here, ωi is the angular velocity
vector expressed in the ith spacecraft reference frame. Then,
the angular velocity of spacecraft expressed in ECI is ωN =
DT

i ω
i. The mean motion is ω =

√
μ/a3; where μ is the earth

grativational constant, and a is the semimajor axis.
The simulation assumptions are as follows: (i) process

and measurement noises for all spacecraft are zero-mean
Gaussian; (ii) Initial conditions of spacecraft are well known;
(iii) The attitude of each spacecraft is well known; (iv) All
spacecraft are equipped with a DBS and TRX; thus, each
one of them can localize others; (v) The reference frame
of the DBS is aligned with the corresponding spacecraft’s
attitude reference frame; (vi) The radar system measurement
is available at all times for the second scenario; (vii) no
signal transmission delay; (viii) The process noise variance
is 10−7 km/s2 along each axis for all scenarios.

6.1. Observability Analysis. The pole placement method pre-
sented in Section 4.2 requires the system to be fully ob-
servable. In this section, the system observability analysis of
these two scenarios is presented. For simplicity, we con-
sider a two-spacecraft formation case for the first scenario in
this observability analysis. The estimated states for DG esti-
mation, after the transformation, is z = [rT12 vT

12 r E]T . The
A matrix for the dynamic model in (18) is

A =
[

I3 × 3 03 × 5

05 × 3 05 × 5

]
. (61)

We assume that only relative position is measured in
cartesian coordinate. The C matrix is given as:

C =
[

I3 × 3 03 × 5

]
. (62)

The rank of the observability matrix using (30) is three,
which is not full rank. Therefore, the pole placement method
presented in Section 4.2 is not applicable.

In the second scenario, a radar measures one spacecraft’s
absolute position (see (16) and (47)). Both the A and C
matrix are given in the (52) and (55), respectively. The rank
of the observability matrix is twelve, which is full rank. Then,
the pole placement method will be implemented in this
scenario and compared with other estimation methods.

6.2. Scenario One. Consider only WLPS measurements are
available in the four-spacecraft formation. The measure-
ments vector, state vector, and its corresponding nonlinear
model and matrices are given in (13), (41) to (45), respec-
tively. Three formation configurations that represent the
short range (�0.25 km), medium range (�60 km), and long
range (�1200 km) are considered. The spacecraft formation
configurations for different formation size are shown in
Table 1. We study the impact of formation size on both EKF
and DG estimation performance.

The measurement noise of WLPS is assumed to be 1
meter in distance (computed based on TOA measurement)
and 0.001 degree in DOA. Then, the measurement noise
covariance matrix is constructed using (14).
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Table 1: Spacecraft formation’s configuration for short, medium, and long range formation.

Short Medium Long

S/C 1 S/C 2 S/C 3 S/C 4 S/C 1 S/C 2 S/C 3 S/C 4 S/C 1 S/C 2 S/C 3 S/C 4

RAAN (deg) 0 0 0 0 −0.1 0 0 0.1 0.2 0 −0.1 0.1

INC (deg) 15 15 15 15 14.5 14 15.5 15 15 20 25 10

ARGPER (deg) 0 0.001 −0.001 0.002 0.2 0 −0.1 0.1 0 5 −5 10

Table 2: Comparing mean RMSE in absolute position: DG Est.
versus EKF.

Distance DG Est. EKF

Short (� 0.25 km) 4.447 × 103 km 2.657 × 10−4 km

Medium (� 60 km) 16.59 km 4.153 × 10−4 km

Long (� 1200 km) 0.901 km 7.616 × 10−3 km
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Figure 4: DG Est. Noise-to-Signal Ratio.

The process noise parameter, w in (1) and (18), is
assumed to be 10−7 on each absolute and relative acceleration
axis for both EKF and DG Estimation. The initial states
standard deviations for EKF are 1 km and

√
0.5 km/sec in

absolute position and velocity, respectively. The initial states
standard deviations for DG Estimation are 1 km in relative
position, 0.5 km/sec in relative velocity, 2 km in absolute
range, 0.001 degree in eccentric anomaly, and 0.001 km/sec
for the pseudoerrors.

6.3. Discussion—Scenario One. Table 2 shows the mean
RMSE in absolute position for DG estimation and EKF with
respect to different mean relative distances. The results show
that the performance of DG estimation improves as the mean
relative distance increases when the measurements consist
of WLPS only. In Figure 4, the signal-to-noise ratio (SNR)
between estimation error and relative distance decreases
when the spacecraft in the formation get closer (or 1/SNR
increases), in which case the errors in the transformation
from relative positions to absolute positions using (35)
become significant.
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Figure 5: Measurement error wrt. distance.

Table 2 depicts that the EKF has a better accuracy
compared to DG Estimation, when only WLPS measure-
ments are used. The EKF does not require the inverse
transformation (34). However, when the relative distance
between spacecraft increases, the effect of DOA estimation
error on the positioning error increases (see Figure 5).
Accordingly, the performance of EKF drops slightly as the
mean relative distance increases.

If only one DBS is available in a three-spacecraft con-
figuration [12], the EKF would be unstable when the mean
relative distance between spacecraft falls within a certain
range (≤10 km). EKF stability can be improved by increasing
the total number of DBSs installed in the formation, which
is shown in Table 2. In addition, increasing the number of
DBSs improves the estimation accuracy.

6.4. Scenario Two. Consider WLPS and radar measurements
are available. Here, the two-spacecraft formation with only
the medium range formation configuration is considered.
The radar is measuring the absolute range, azimuth and
elevation angle of spacecraft 1 at all time. The configuration
of both spacecraft is similar to the configuration of S/C 1
and S/C 2 shown in Table 1. The measurement vector, state
vector, and its corresponding nonlinear model and matrices
are given in (16), (47) to (55), respectively. The performance
of the EKF and the DG estimation for a given range of
measurement noise is studied. The measurement noises of
WLPS and radar are depicted in Table 3. The measurement
noise covariance matrix is constructed using (17).
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Table 3: Measurement noise’s set configuration.

Minimum Maximum Increment

Relative Distance, (km) 0.001 0.04 0.004

Relative azimuth and elevation, (deg) 0.001 0.04 0.004

Absolute range, (km) 0.1 4 0.4

Absolute azimuth and elevation, (deg) 0.001 0.4 0.004

The process noise parameter, w, is assumed to be 10−7 for
all axes in EKF. For DG Estimation, the standard deviation
of process noises for the relative position acceleration is
10−7, the absolute distance’s acceleration is

√
10 × 10−4, and

the absolute azimuth and elevation angles’ acceleration is√
10×10−7. The initial states standard deviations for EKF are

2 km in absolute position and 0.1 km/sec in absolute velocity.
The initial states standard deviations for DG Estimation are
0.1 km in relative position, 0.05 km/sec in relative velocity,
1 km in absolute range, and 0.05 degrees in azimuth and
elevation angles. In addition, the initial variance for the rate
of change of the range is 0.1 km/sec, and the rate of change
of the absolute azimuth and elevation angles is 0.001 degree.

The simulation for each set of corresponding measure-
ment noise is repeated for 10 times to compare the consis-
tency of results produced by both filters. Then the maximum,
minimum, and mean RMS of each set of measurement noise
for both EKF and DG Estimation are compared.

6.4.1. Linear Filtering Gain. First, the DG Estimation is com-
pared with the EKF performance using the gain computation
presented in Section 4.1. Figures 6 and 7 show the RMSE of
DG Estimation and EKF for measurement noise standard
deviation of 0.001 km in relative range, 0.001 degree in
relative azimuth and elevation angle, 0.01 km in absolute
range, and 0.01 degree in absolute azimuth and elevation
angle. Figure 6 shows that the DG Estimation converges
faster than EKF, because the DG Estimation avoids the
linearization steps in the estimation.

However, Figure 7 shows that EKF is more accurate
than DG Estimation. The nonlinear dynamic model in DG
estimation is expressed in terms of measurements and pseu-
domeasurements (see (41) and (48)). While the linearization
step is eliminated in the DG estimator, the propagation step is
dependent on the measurements noises. On the other hand,
the nonlinear dynamic model of EKF is expressed in terms of
the estimated state vector with additional linearization steps.
The EKF is able to achieve a better accuracy if the estimation
converges.

Figure 8 compares the minimum and maximum RMSE
of DG estimation and EKF for a given set of measurement
noise standard deviation. The DG gain is computed using
the method shown in Section 4.1. With additional radar
measurement, the DG estimation accuracy is improved. In
addition, the minimum and maximum RMSE of DG Esti-
mation are very close compared to EKF because the DG es-
timation does not require linearization steps. Therefore, a
stable estimation can be always achieved.
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Figure 6: DG Est. RMSE.
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Figure 8 also shows that the EKF has better accuracy
performance than the DG estimation. However, the stability
of the EKF is not always guaranteed. In Figure 8, we observe
large RMSEs in the EKF estimation at higher measurement
noise levels. The large RMSE is caused by the unstable esti-
mation of EKF, which is due to the linearization of the non-
linear radar measurement and state models in the EKF algo-
rithm. On the other hand, the DG Estimation does not re-
quire any linearization step.
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ween two filters with respect to measurement noise increment.
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6.4.2. Pole Placement Method. Figures 9 and 10 compare the
RMSE performance between the DG Estimation and the
EKF. The EKF’s configuration is the same as in the previous
case. On the other hand, the pole placement method is as
follows. The poles for the relative position are [−0.001
−0.001 −0.001], for the relative velocity vector are [−0.0004
−0.0004−0.0004], and for the absolute position and velocity
in polar coordinates are [−0.1 −0.02 −0.02] and [−0.05
−0.01 −0.01], respectively. The DG estimation gain is com-
puted using the Ackermann’s formula [16].

Figure 9 shows that when the EKF estimation is stable,
the EKF has better accuracy performance than the DG esti-
mation. However, the linear system characteristic of the
DG estimation allows it to converge faster than the EKF.
Figure 10 shows that the EKF may suffer instability due to the
linearization steps in the algorithm. In Figure 10, the EKF is
able to converge to lower RMSE than the DG estimation, but
the RMSE diverges after a certain time period. However, the
DG estimation does not suffer any instability. Therefore, the
pole placement method in DG estimation does guarantee the
fast convergence and stability of estimation algorithm.

6.5. Complexity Analysis . In [33], a formalism of O function
for complexity computational of matrices operation has been
introduced, which are:

SUM(N ×M,N ×M) = O(N ×M),

SUB(N ×M,N ×M) = O(N ×M),

MUL(N ×M,M × P) = O(N ×M × P),

INV(N ×N) = O
(
N3),

(63)

where, M, N , and P are the dimensions of matrices that
perform these operations. Here, P is the number of states in
DG estimation, N is the number of states in EKF, M is the
number of measurements, and Qp and Qn are the number of
process noise in DG estimation and EKF, respectively.

We assume the computational complexity of the jacobian
matrices is in the order of O(1). In addition, the propagation
of the state models is considered to have the complexity of
O(1) in both filters. The EKF requires an order of O(M ×
N × N) for measurement model computation, while the
DG estimation only requires an order of O(1) computa-
tion complexity. Therefore, the EKF requires higher compu-
tational complexity to compute the measurement.

The EKF requires the order of O(M3) and O(M × N2)
computation complexity for gain matrix. There are two dif-
ferent computation complexities in DG estimation for gain
matrix computation. For the pole placement method, there
is no computational complexity because the gain matrix
is predetermined. For the linear filtering method, the gain
computational complexity is in the order of O(M3) and
O(M × P2). Both EKF and DG estimation may have same
computation complexity if all states are observed. However,
the DG estimation has higher computational complexity if
not all states are observed (P2 	 N2).

The covariance update and propagation’s computational
complexity for the EKF are in the order of O(N3), O(N2 ×
Qn), and O(N3). There is no computational complexity for
covariance update and propagation for DG estimation if
the pole placement method is used. However, for the linear
filtering method, the computational complexities are in the
order of O(P3), O(P2 ×Qp), and O(P3).

Therefore, for fully observable case, the DG estimation
has lower computational complexity. In addition, among the
two DG estimation approaches implemented in this paper,
the pole placement method has lower computational com-
plexity compared to the linear filtering method. But the EKF
has lower computation complexity if not all states are fully
observed.
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Figure 10: RMSE comparison (Unstable EKf).

7. Conclusion

This paper presents an implementation of the differential
geometric estimation in relative and absolute positions esti-
mation for spacecraft formations. In the transformed linear
domain, two approaches have been implemented in this
paper: the pole placement and the linear filtering approaches.
Simulations are conducted to compare the estimation per-
formance of the differential geometric estimation and the
extended Kalman filter. The results show that the differential
geometric estimation has a faster convergence rate, and has
better stability, compared to the extended Kalman filter. The
complexity analysis shows that the differential geometric
estimation has lower complexity when the system is fully
observable.

Appendices

A. Time Derivative of State Vectors in Polar and
Cartersian Coordinate

For simplicity, in this section, we assume r ≡ ri, λ ≡ λi and
ξ ≡ ξi.

(1) First order time derivatives of polar coordinates is

ṙ = xẋ + y ẏ + zż

r
,

λ̇ = xẏ − yẋ

x2 + y2
,

ξ̇ = ż
(
x2 + y2

)1/2

r2
− z

(
xẋ + y ẏ

)
r2
(
x2 + y2

)1/2 .

(A.1)

(2) The Cartesian representation in polar coordinates is

x = r cos λ cos ξ,

y = r sin λ cos ξ,

z = r sin ξ.

(A.2)

(3) First order time derivatives of cartesian coordinates is

ẋ = ṙ cos λ cos ξ − rλ̇ sin λ cos ξ − rξ̇ cos λ sin ξ,

ẏ = ṙ sin λ cos ξ + rλ̇ cos λ sin ξ − rξ̇ sin λ sin ξ,

ż = ṙ sin ξ + rξ̇ cos ξ.

(A.3)

B. Conversion of Measurement
Noise Covariance from Polar to
Cartesian Coordinate

Reference [28] shows the expression cartesian coordinate
measurement noise in terms of polar coordinate vector. Giv-
en that r is the relative range, ψ and φ are the relative eleva-
tion and azimuth angles at the current time step, respectively.
The corresponding measurement noises in standard devia-
tion are σr , σψ and σφ, respectively. Then, the measurement
noise covariance,�i j , in cartesian coordinate is given as

�c,i j

= Tk diag

⎧⎨⎩
(
r2 + σ2

r

)(
1 + e−2σ2

ψ

)(
1 + e−2σ2

φ

)
4

− r2e−σ2
ψ + σ2

φ ,

(
r2 + σ2

r

)(
1− e−2σ2

ψ

)(
1 + e−2σ2

φ

)
4

,(
r2 + σ2

r

)(
1 + e−2σ2

ψ

)(
1− e−2σ2

φ

)
4

,(
r2 + σ2

r

)(
1− e−2σ2

ψ

)(
1− e−2σ2

φ

)
4

⎫⎬⎭TT
k ,

(B.1)

where the “diag” represents the diagonal matrix, and Tk is
given as

Tk =
⎡⎢⎣cosψ cosφ − sinψ cosφ − cosψ sinφ sinψ sinφ

sinψ cosφ cosψ cosφ − sinψ sinφ cosψ sinφ
sinφ 0 − cosφ 0

⎤⎥⎦.
(B.2)
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