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Abstract

Divergence and flutter instabilities of a rectangular, specially orthotropic plate (simply supported on a

pair of opposite sides) subject to follower forces are computationally analyzed. The effects of the tangential

follower parameter ðZÞ; aspect ratio ðlÞ; boundary condition (on the side opposite the loaded edge), and

material orthotropy on the magnitude of the critical load and the mode (divergence or flutter) of instability

are detailed. For the three boundary conditions considered (built in, simply supported, and free free—for

the side opposite the loaded edge) and given material orthotropy, the l–Z plane is divided into regions

corresponding to different governing instabilities. Both the number and size of these regions depend

strongly upon the boundary condition considered as does the governing instability. For a given boundary

condition the configuration of the stability regions is independent of material orthotropy. Material

orthotropy affects only the buckling loads corresponding to the instabilities and the size of the regions.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The high strength-to-weight ratio of fiber-reinforced composites is making orthotropic plate

structures increasingly common in weight-sensitive applications such as aeronautics, automotive

design, offshore structures, and biomedical devices. The reduced thickness, made possible by the
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high strength of these materials, makes the structural stability (both strength and buckling mode)

of orthotropic plates an important design consideration for numerous industries. However, the

elastic stability analysis of rectangular plates has focused mainly on the isotropic materials and

conservative loads appropriate to heavy plates composed of traditional materials rather than the

anisotropic materials and non-conservative loads appropriate to modern lighter plates. The

influence of follower (or sub-follower forces) on buckling for composite plates has not been

extensively analyzed. Most existing studies have either simply compared perfect follower loads to

conservative loads or restricted attention to isotropic materials. In practice, most loads in complex

structures are neither pure conservative nor pure follower and perhaps change as the structure

ages. Generally, follower forces tend to increase the divergence buckling load and increase the

likelihood of flutter. This paper systematically examines the effects of full/subtangential loading

on the stability of orthotropic plates with a variety of widely employed boundary conditions.

Stability studies of rectangular, orthotropic plates have focused on plates with boundary

conditions typical of engineering analysis. In general, the loaded side is torque free but subject to a

possibly subtangential load, the two sides perpendicular to the loaded side are simply supported,

while the side opposite the loaded edge is either simply supported, built in, or satisfies a symmetry

motivated boundary condition. Although any elastically constrained boundary condition could be

studied with minor modifications of our procedure, we focus on the conventional boundary

conditions.

Divergence instability studies of rectangular, orthotropic plates with conservative loading

include: Wittrick [1] studied aspect ratio, boundary conditions, and material orthotropy effects

using a correlation method; Shulesko [2] developed solutions using a reduction method; Brunille

and Oyibo [3] provided generic buckling curves for specially orthotropic, rectangular plates; and

several recent works [4–9] which examine effects of different boundary conditions, material

orthotropy, and aspect ratio. Flutter instability studies of rectangular, isotropic plates with non-

conservative loading include: Culkowski and Reismann [10] studied cantilevered plates with two

follower forces; Leipholtz [11] and Leipholtz and Pfendt [12,13] investigated boundary

condition effects; Adali [14] examined follower and in plane forces; Kumar and Srivasta [15]

studied thin plates with two simply supported and two free edges with follower forces

maintaining a specified angle of inclination on the free edges; Higuchi and Dowell [16] studied

Poisson’s ratio effects with free free boundary conditions while Reissner and Wan [17]

considered similar effects for plates with two opposed simply supported and two opposed free

edges with tangential follower forces on the free edges; Zuo and Shreyer [18] described divergence/

flutter instability regions for simply supported plates with a combination of fixed and follower

forces; and Farshad [19] examined biaxial subtangential loads. The only investigation of the

interaction between orthotropy and follower loads is the recent paper by Kim and Kim [20] that

treats the flutter instability of rectangular, cantilevered, orthotropic plates subject to follower

forces.

The present investigation takes the position that for fault-tolerant design it is important to

analyze structures for subtangential loads and examines the divergence/flutter instability regions

for rectangular, specially orthotropic plates as the load changes from a conservative to a follower

force. Since the buckling mode is a significant design criteria, the dependence of the instability

regions on the aspect ratio, boundary conditions, and the generalized rigidity ratio quantifying

material orthotropy are also studied.
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2. Solution technique

We generally follow the development and notation of Zuo and Shreyer [18].

2.1. Governing equations

The thin, uniform, specially orthotropic plate, shown in Fig. 1, with mid plane coordinates x

and y parallel to the material elastic symmetry axes is simply supported along the edges x ¼ 0 and

x ¼ a with a follower force Ny at the free edge y ¼ b=2: Three different boundary conditions—

simply supported (SS), built in (BI), and free free (FF)—are considered along the remaining edge

y ¼ ÿb=2: With wðx; y; tÞ the lateral deflection at time t and coordinates ðx; yÞ; the bending

ARTICLE IN PRESS
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moments (Mx and My), twisting moment ðMxyÞ; and shear forces (Vx and Vy) per unit length are

Mx ¼ D11

q
2w

qx2
þD12

q
2w

qy2
; My ¼ D12

q
2w

qx2
þD22

q
2w

qy2
;

Mxy ¼ 2D66

q
2w

qxqy
; nx ¼ ÿ qMx

qx
ÿ 2

qMxy

qy
; ny ¼ ÿ qMy

qy
ÿ 2

qMxy

qx
; (1)

where Dij are the elastic constants of the plate. Balance of angular momentum [1] (with r the plate

density) is

q
2Mx

qx2
þ 2

q
2Mxy

qxqy
þ q

2My

qy2
þNy

q
2w

qy2
þ r

q
2w

qt2
¼ 0: (2)

Substituting Eq. (1) into Eq. (2) gives the governing equilibrium equation for the orthotropic plate

D11

q
4w

qx4
þ 2ðD12 þ 2D66Þ

q
4w

qx2qy2
þD22

q
4w

qy4
þNy

q
2w

qy2
þ r

q
2w

qt2
¼ 0: (3)

Introducing the scaled coordinates x0 and y0 in addition to the scaled plate dimensions a0 and b0
(see for example Ref. [3]),

x ¼
ffiffiffiffiffiffiffiffi

D4
11

q

x0 and y ¼
ffiffiffiffiffiffiffiffi

D4
22

q

y0; a ¼
ffiffiffiffiffiffiffiffi

D4
11

q

a0 and b ¼
ffiffiffiffiffiffiffiffi

D4
22

q

b0 (4)

and defining the generalized rigidity ratio D� and generalized Poisson’s ratio � by

D� ¼ D12 þ 2D66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D11D22

p ; � ¼ D12

D12 þ 2D66

(5)

transforms Eq. (3) to

q
4w

qx40
þ 2D� q

4w

qx20qy
2
0

þ q
4w

qy40
þ k

p

a0

� �2
q
2w

qy20
þ r

q
2w

qt2
¼ 0; (6)

where the affine plate buckling coefficient is the scaled load

k ¼ Ny
ffiffiffiffiffiffiffiffi

D22

p a0

p

� �2

: (7)

The simply supported boundary conditions at x ¼ 0 and x ¼ a (or equivalently x0 ¼ 0 and

x0 ¼ a0) are

wð0; y; tÞ ¼ wða; y; tÞ ¼ 0; Mxð0; y; tÞ ¼ Mxða; y; tÞ ¼ 0: (8)

We write w0ðx0; y0; tÞ for the displacement as a function of the scaled variables (4) and assume the

form

w0ðx0; y0; tÞ ¼ sinðmpx0=a0ÞY ðy0ÞeiOt: (9)

This form, which automatically satisfies the simply supported (w ¼ 0 and Mx ¼ 0) boundary

conditions at x0 ¼ 0 and x0 ¼ a0; represents a steady-state vibration with frequency O and m half-

waves in the x direction. The Levy form (9), which can be derived from a separation of variables

argument, satisfies the governing partial differential equation (6) if Y satisfies the ordinary
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differential equation

d4Y

dy40
ÿ p

a0

� �2

ð2m2D� ÿ kÞ d
2Y

dy20
þ p

a0

� �4

m4 ÿ rO2a40
p4

� �

Y ¼ 0: (10)

Substituting z ¼ py0=a0 and writing f ðpy0=a0Þ ¼ Y ðy0Þ transforms Eq. (10) to

d4f

dz4
ÿ ð2m2D� ÿ kÞ d

2f

dz2
þ ðm4 ÿ o2Þf ¼ 0; (11)

where o2 ¼ rO2ða0=pÞ4: Finally, substituting Eq. (9) into Eq. (1) reduces the expressions for the

bending moments and shear forces to

Mx ¼
ffiffiffiffiffiffiffiffi

D11

p

eitO
p

a0

� �2

sin
mpx0

a0

� �

½�D�f 00ðzÞ ÿm2f ðzÞ�;

My ¼
ffiffiffiffiffiffiffiffi

D22

p

eitO
p

a0

� �2

sin
mpx0

a0

� �

½ f 00ðzÞ ÿm2�D�f ðzÞ�;

Mxy ¼ ðD11D22Þ1=4eitO
p

a0

� �2

cos
mpx0

a0

� �

½mð�ÿ 1ÞD�f 0ðzÞ�;

Vx ¼ ðD11Þ1=4eitO
p

a0

� �3

cos
mpx0

a0

� �

½m3f ðzÞ þ ð�ÿ 2ÞmD�f 00ðzÞ�;

Vy ¼ ðD22Þ1=4eitO
p

a0

� �3

sin
mpx0

a0

� �

½m2ð�ÿ 2ÞD�f 0ðzÞ ÿ f 000ðzÞ�: ð12Þ

2.2. Boundary conditions

The explicit expressions (12) for the bending moments and shear forces show the Levy form (9)

automatically satisfies simply supported boundary conditions at x ¼ 0 and x ¼ a: At y ¼ b=2 the

shear force must balance the applied follower load Ny and the bending moment is zero. The

follower force and bending moment conditions at y ¼ b=2 are

Vy ¼ ZNy dw=dy; My ¼ 0; (13)

where Z is a parameter interpolating between the conservative force Z ¼ 1 and the follower force

Z ¼ 0: Substituting expressions (12) for the shear force and bending moment into Eq. (13) gives

0 ¼ f 000ðl=2Þ ÿ ðm2ð2ÿ �ÞD� ÿ ZkÞf 0ðl=2Þ; 0 ¼ f 00ðl=2Þ ÿm2�D�f ðl=2Þ; (14)

where the scaled plate aspect ratio l is

l ¼ p
b0

a0
¼ p

b

a

D11

D22

� �1=4

: (15)

Three different boundary conditions are considered at y ¼ ÿb=2: For a built in (BI) end, w ¼ 0

and dw=dy ¼ 0 at y ¼ ÿb=2: For a simply supported (SS) end w ¼ 0 and My ¼ 0 at y ¼ ÿb=2:
For a free free (FF) end with conservative loading ðZ ¼ 1Þ; My ¼ 0 and Vy ¼ 0 at y ¼ ÿb=2:
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These boundary conditions are the most common in practice and are physically realizable with

FF, SS, and BI corresponding to increasingly stiff support structures. Expressions (9), (12) and

(14) give the following boundary conditions for BI, SS, and FF:

BIÿ
f ðÿl=2Þ ¼ 0;

f 0ðÿl=2Þ ¼ 0;

�

(16)

SSÿ
f ðÿl=2Þ ¼ 0;

f 00ðÿl=2Þ ¼ 0;

�

(17)

FFÿ f 00ðÿl=2Þ ÿm2�D�f ðÿl=2Þ ¼ 0;

f 000ðÿl=2Þ ÿ ðm2ð2ÿ �ÞD� ÿ kÞf 0ðÿl=2Þ ¼ 0:

(

(18)

To compare our results with Zuo and Schreyer [18] we follow their argument and decompose the

FF boundary conditions into simpler even (EFF) and odd (OFF) free free boundary conditions

applied at the midpoint y ¼ 0 of the plate:

OFFÿ
f ð0Þ ¼ 0;

f 00ð0Þ ¼ 0;

�

(19)

EFFÿ
f 0ð0Þ ¼ 0;

f 000ð0Þ ¼ 0:

�

(20)

It should be noted that the OFF boundary conditions are (after an elementary scaling argument)

the SS boundary conditions for a plate with aspect ratio l=2:

2.3. Characteristic equation

The generic form of the general solution of the ordinary differential equation (11) is

f ðzÞ ¼ C1e
a1z þ C2e

a2z þ C3e
a3z þ C4e

a4z; (21)

where a1; a2; a3; and a4 are the four generically distinct roots of the characteristic polynomial

a4 ÿ ð2m2D� ÿ kÞa2 þ ðm4 ÿ o2Þ ¼ 0 (22)

given by

a ¼ �ð2m2D� ÿ kÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk ÿ 2m2D�Þ2 þ 4ðo2 ÿm2Þ
q

=
ffiffiffi

2
p

: (23)

The number and complexity of the boundary conditions considered in this paper negate the

benefits exploited in Ref. [14] of rewriting solution (21) as explicitly real expression containing

trigonometric and/or hyperbolic functions depending on the nature of the roots (23). The only

drawback to our explicitly complex calculation is the unavoidable presence, due to numerical

round off, of extremely small imaginary floating point values, which we simply discard, in our

results.

ARTICLE IN PRESS

G. Jayaraman, A. Struthers / Journal of Sound and Vibration 281 (2005) 357–373362



Substituting Eq. (21) into the follower force condition (14) at y ¼ b=2 (equivalently z ¼ l=2)
gives the two linear equations

a1C1 þ a2C2 þ a3C3 þ a4C4 ¼ 0; b1C1 þ b2C2 þ b3C3 þ b4C4 ¼ 0 (24)

for the constants C1;C2;C3; and C4 where the coefficients ai and bi are

ai ¼ ða2i ÿ �D�m2Þeail=2; bi ¼ ða3i ÿ ai½ð2ÿ �ÞD�m2 ÿ Zk�Þeail=2: (25)

The BI and SS boundary conditions (16) and (17) at y ¼ ÿb=2 (equivalently z ¼ ÿl=2) give two

additional linear equations

BIÿ eÿa1l=2C1 þ eÿa2l=2C2 þ eÿa3l=2C3 þ eÿa4l=2C4 ¼ 0;

a1e
ÿa1l=2C1 þ a2e

ÿa2l=2C2 þ a3e
ÿa3l=2C3 þ a4e

ÿa4l=2C4 ¼ 0;

(

(26)

SSÿ eÿa1l=2C1 þ eÿa2l=2C2 þ eÿa3l=2C3 þ eÿa4l=2C4 ¼ 0;

a21e
ÿa1l=2C1 þ a22e

ÿa2l=2C2 þ a23e
ÿa3l=2C3 þ a24e

ÿa4l=2C4 ¼ 0;

(

(27)

while the OFF and EFF boundary conditions at y ¼ 0 (equivalently z ¼ 0) give the linear

equations

OFFÿ
C1 þ C2 þ C3 þ C4 ¼ 0;

a21C1 þ a22C2 þ a23C3 þ a24C4 ¼ 0;

�

(28)

EFFÿ
a1C1 þ a2C2 þ a3C3 þ a4C4 ¼ 0;

a31C1 þ a32C2 þ a33C3 þ a34C4 ¼ 0

�

(29)

for the constants C1;C2;C3; and C4: Each set of boundary conditions gives a matrix

ABI ¼

eÿa1l=2 eÿa2l=2 eÿa3l=2 eÿa4l=2

a1e
ÿa1l=2 a2e

ÿa2l=2 a3e
ÿa3l=2 a4e

ÿa4l=2

a1 a2 a3 a4

b1 b2 b3 b4

0

B

B

B

@

1

C

C

C

A

; (30)

ASS ¼

eÿa1l=2 eÿa2l=2 eÿa3l=2 eÿa4l=2

a21e
ÿa1l=2 a22e

ÿa2l=2 a23e
ÿa3l=2 a24e

ÿa4l=2

a1 a2 a3 a4

b1 b2 b3 b4

0

B

B

B

@

1

C

C

C

A

; (31)

AOFF ¼

1 1 1 1

a21 a22 a23 a24

a1 a2 a3 a4

b1 b2 b3 b4

0

B

B

B

@

1

C

C

C

A

; AEFF ¼

a1 a2 a3 a4

a31 a32 a33 a34

a1 a2 a3 a4

b1 b2 b3 b4

0

B

B

B

@

1

C

C

C

A

: (32,33)
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For a matrix A chosen from Eqs. (30)–(33), substituting a coefficient vectors C
*

¼ ½C1;C2;C3;C4�
satisfying

AC
*

¼ 0 (34)

into Eq. (21) gives a solution of Eq. (11) satisfying the boundary conditions associated with the

matrix. Non-trivial solutions to Eq. (34), which exist when the characteristic equation

det ðAÞ ¼ 0 (35)

is satisfied, indicate instability of the undisturbed equilibrium w ¼ 0: The time dependence eiOt of a

non-trivial solution (where O ¼ �oðp=a0Þ1=
ffiffiffi

r
p

) determines the nature of the instability: if O ¼ 0

there is an adjacent static equilibrium; if O ¼ Or þ iOi with imaginary part Oia0 then there is an

exponentially growing disturbance. An adjacent static equilibrium indicates a divergence

instability. An exponentially growing solution indicates a flutter instability.

2.4. Computational notes

Expressions (30)–(33) for the matrices ABI; ASS; AOFF and AEFF involve the material parameters

� and D�; the mode number m; the frequency o; the load k; the follower parameter Z; and the

affine aspect ratio l: However, the follower parameter Z; which is not involved in expression (23)

for the roots a; appears only in the fourth row of each matrix. As a result, the characteristic

equation (35) is linear in Z for each of the four boundary conditions. Solving this linear equation

gives a complicated but explicit expression of the form

Z ¼ Fðk; l;o;m; �;D�Þ (36)

for the follower parameter satisfying Eq. (35). The explicit form of F depends on the boundary

conditions.

2.4.1. Explicitly complex arithmetic

The explicitly complex computation of Z described above has the significant advantage of

combining five real computations (generated by five distinct forms for the roots of Eq. (22), [14])

into one complex computation. The only drawback is that although the Z values given by Eq. (36)

should be real, incomplete cancellation (in the complex floating point computation) leaves a small

imaginary residue in the computed Z: The insignificant (in the computations reported less than

10ÿ12) imaginary part is simply neglected.

2.4.2. Generic solutions

The generic solution form (21) is appropriate when Eq. (22) has four distinct roots. There are

repeated roots of Eq. (22) if either

ðo2 ÿm2Þ þ ðk=2ÿm2D�Þ2 ¼ 0; or ðo2 ÿm2Þ ¼ 0: (37)

The explicit form of the solution can be computed for either (or both) degeneracy. However, we

do not need these degenerate forms. The simple solution is to avoid these non-generic cases by

avoiding the specific frequency o ¼ m and the specific loads k ¼ 2m2D� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jo2 ÿm2j
p

:
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2.4.3. Explicit expression

Solving the characteristic equation (35) to give Z as a function (36) of the remaining parameters

avoids repeatedly solving the non-linear equation (35) for the buckling load k:

2.4.4. Non-physical values and singularities

Expressions (36) gives values for Z outside the physical range 0pZp1 for many parameter

values and in addition the expressions are singular along various curves in the parameter space.

This does not pose a problem. We simply disregard values of Z outside the physical range 0pZp1

and avoid interpolation in the Z values.

2.4.5. Computational range

Eq. (35) would normally be solved for k: To exploit Eq. (36), k is considered as an independent

variable. As a consequence, the computational range of k is restricted. Throughout the paper this

maximum non-dimensionalized load is 12. Blank regions in figures imply that either no buckling

load exists or that the non-dimensional buckling load exceeds 12.

2.4.6. Divergence loads

A value of k for which the plate exhibits a divergence instability is a divergence critical load. In

other words, a divergence critical load is a solution of the characteristic equation (35) with

frequency o ¼ 0:
For a given boundary condition and specified m; �; and D� divergence, critical loads are

computed by compiling Z values—using the appropriate version of Eq. (36)—on a regular grid of

more than a quarter of a million l and k values with 0:5plp4 and 0okp12: For each l the

smallest k value giving Z ¼ 0:00; 0:01; . . . up to Z ¼ 1:00 was computed (with piecewise linear

interpolation in k) to generate a data set giving divergence critical loads as a function of l and Z:
Values of l and Z for which no k value is found (either because no divergence critical load exists

for the plate or because the divergence critical load exceeds 12) are flagged.

2.4.7. Flutter loads

A value of k for which the plate exhibits a flutter instability is a flutter critical load. The

boundary of the flutter instability region is characterized by the marginally stable solutions of Eq.

(35) with o ¼ or þ oii and oi ¼ 0: For most purposes the frequency or is irrelevant and only the

flutter stability boundary (the minimum flutter critical load k over all possible frequencies or) is

reported.

We continue to exploit the explicit expression (36) for the follower parameter by noting that

Z ¼ Fðk̂ðoÞ; l;o;m; �;D�Þ ) 0 ¼ qF

qk

dk̂

do
þ qF

qo
: (38)

As a result, at a local minimum of k̂ðoÞ; i.e. a flutter critical load on such a curve one has

qF

qo
¼ 0: (39)

For a given boundary condition and specified m; �; and D�; flutter critical loads are computed by

compiling Z values using Eq. (36) on a grid of more than 20 million l; k and o values with
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0:5plp4 and 0okp12; and 0pop10: Differencing this data set in o identifies solutions of Eq.

(39) which gives fZ;og pairs satisfying Eqs. (35) and (39). Flutter critical loads are extracted from

these Z values using the procedure described before for divergence critical loads. As before, values

of l and Z at which no flutter critical load is found are flagged.

3. Mode shapes

Mode shapes are readily computed by substituting the constants C1; C2; C3; C4 from Eq. (34)

back into Eq. (21). Complicated mode shapes can result. A fundamental mode shape has no

inflection points.

4. Stability curves

The aim of this paper is to illustrate the effects of the boundary conditions BI, SS, FF defined in

Eqs. (16)–(18), generalized rigidity ratio D� defined in Eq. (5), scaled plate aspect ratio l defined in

Eq. (15), and follower parameter Z on both flutter and divergence loads. We first focus on the

boundary conditions. Then we examine the dependence of the divergence and flutter loads on l:
We conclude with the dependence on D�: All subsequent computations and figures have

fundamental transverse mode shape, m ¼ 1: Higher order transverse mode shapes were found to

give significantly greater critical loads.

4.1. Divergence and flutter load dependence on boundary conditions

Fig. 2 compares Built In (BI), Simply Supported (SS), Free-Free (Even—EFF and Odd—OFF)

divergence and flutter loads for 0pZp1 with aspect ratio l ¼ 3:5; material orthotropy D� ¼ 1:0;
and � ¼ 0:3: The heavy curves are divergence loads while the light curves are flutter loads. We
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anticipate that within any divergence mode (i.e. disregarding discontinuities) the divergence load

will decrease as Z increases: we term this behavior normal and any other behavior anomalous.

4.1.1. Built in

Fig. 2(a) shows the buckling loads for BI boundary conditions. The primary divergence curve is

the heavy small arc extending from fZ; kg � f1; 2:55g down to f0:73; 5:00g and back to f1; 6:92g:
The primary flutter curve extends from fZ; kg � f0; 5:40g until it merges with the primary

divergence curve at f0:83; 4:08g: For divergence it is important to note that the secondary

divergence curve (the heavy line from fZ; kg � f1; 9:25g to f0:66; 12g) extends further left than the

primary curve. In fact, a sequence of similar but higher load divergence curves exist above k ¼ 12:
These extend progressively further to the left and provide divergence loads for 0:5oZp1: For
flutter, it is important to note that the secondary flutter curve (the light curve from fZ; kg �
f0; 7:27g to f1; 7:95g) provides flutter loads for any 0pZp1: The BI plate is governed by flutter for

Zo0:83 and by divergence for Z40:83: The combined instability curve decreases as Z increases

except for a small anomalous region where the flutter load rises to meet the divergence load just

before the transition Z � 0:83: This is the general pattern for BI plates. The interesting question is

how the critical value of Z at which the transition occurs varies withaspect ratio l and material

orthotropy ratio D�:

4.1.2. Simply supported

Fig. 2(b) shows the buckling loads for SS boundary conditions. The primary divergence curve

extends completely across the figure from Z ¼ 0 and k � 5:15 to Z ¼ 1 and k � 2:48: The primary

flutter curve is the isolated loop below the primary divergence curve extending from fZ; kg �
f0:35; 4:19g to fZ; kg � f0:81; 2:96g: For flutter it is important to note that the secondary flutter

curves extends further right and left than the primary flutter curve. The SS plate is governed by a

divergence mode for 0pZo0:35; which jumps down to a flutter mode at Z � 0:35; and jumps back

up to a divergence mode at Z � 0:81: The resulting stability curve decreases as Z increases except

for the jump discontinuity at Z � 0:81 and a small anomalous region below the jump. This is the

general pattern for SS plates. The interesting question is how the critical Z values (Z � 0:35 and

Z � 0:81 for D� ¼ 1:0 and l ¼ 3:5) vary with material orthotropy ratio D� and aspect ratio l:

4.1.3. Free free

The analysis of the FF boundary condition is more involved since in this case the instability can

have either odd (OFF) or even (EFF) mode shape.

Fig. 2(c) combines the flutter and divergence stability curves for the OFF and EFF modes. As

before, the heavy curves are divergence loads while the light curves are flutter loads. The solid

curves are even EFF loads the dashed curves are odd OFF loads. The FF plate is governed by an

even divergence mode for 0pZo0:24; which jumps down to an even flutter mode for

0:24oZo0:77 and is followed by a continuous transition to an odd divergence mode for

0:77oZp1: This is the general behaviour for FF plates. The question of interest is how the

stability intervals change with aspect ratio l and material orthotropy D�:
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4.2. Divergence load dependence on aspect ratio l

Having established the characteristic behavior of the different boundary conditions by

examining l ¼ 3:5; we now proceed to examine the effect on the divergence load of changing the

aspect ratio l: Fig. 3 shows the dependence of divergence critical loads for 0pZp1 and 0:5plp4

when D� ¼ 1:0: The data for each boundary condition (BI, SS, and FF) was compiled as described

in the computational notes to give the data sets shown in Fig. 3. Blank regions in Fig. 3 indicate

either that no divergence load exists or that the non-dimensional load exceeds 12. We anticipate

that within any divergence mode (i.e. disregarding discontinuities) the divergence load will

decrease as both l and Z increase: we term this behavior normal and any other behavior

anomalous.

4.2.1. Built in

Fig. 3(a) shows the divergence loads less than 12 for a BI plate with D� ¼ 1: The region at the

top of the figure is the fundamental divergence region. Lower resolution computations with higher

maximum k values show that: the small island of divergence critical loads below the fundamental

divergence region is the first of several higher order divergence loads; that these loads completely

fill the region Z40:5; and there are no divergence critical loads for the BI plate with Zo0:5: The
divergence critical load is normal throughout the entire region.

4.2.2. Simply supported

Fig. 3(b) shows the divergence critical loads less than 12 for a SS plate with D� ¼ 1: Lower
resolution computations with higher maximum k values show that in contrast to the BI case for

the SS plate there are divergence critical loads for any 0pZp1 and 0:5olo4: The divergence

load is normal except for the strongly anomalous region in the lower left hand corner (where the
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divergence critical load increases as l increases) in advance of the discontinuity along the curve

from fl; Zg � f0:5; 0:19g to f2:23; 0:81g and a very slight increase in the divergence load with l in

the upper right hand corner.

4.2.3. Free free

As before, the analysis of the FF boundary condition is more involved since for a given l and Z

the lower of the OFF and EFF divergence loads provides the governing FF divergence load.

Fig. 3(c) combines the OFF and EFF divergence data to show the dependence of the FF

divergence load on l and Z: An ‘‘O’’ or ‘‘E’’ indicates an Odd or Even mode shape. The load is

normal throughout the entire region.

4.3. Flutter load dependence on aspect ratio l

Having characterized the divergence loads associated with each boundary condition, we now

proceed to examine the effect on the flutter load of changing the aspect ratio l and follower load Z:
Fig. 4 shows the non-dimensional flutter loads for 0pZp1 and 0:5plp4 when D� ¼ 1:0: The
data for each boundary condition (BI, SS, and FF) was compiled as described in the

computational notes to give the data sets shown in Fig. 4. Blank regions in Fig. 4 indicate that

either no flutter load exists, that the non-dimensional load exceeds 12, or the non-dimensional

frequency exceeds 10. We anticipate that within any flutter mode (i.e. disregarding discontinuities)

the flutter load will decrease with both l and Z: we term this behavior normal and any other

behavior anomalous.
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4.3.1. Built in

Fig. 4(a) shows the flutter loads for a BI plate with D� ¼ 1: The large lower region is the

fundamental flutter region; the small upper region is a higher order flutter load. Lower resolution

computations with higher maximum k values show that both regions expand to the left to provide

flutter loads for 0pZp1 and 0:5olo4: The flutter load is normal throughout the entire region.

4.3.2. Simply supported

Fig. 4(b) shows the flutter loads for a SS plate with D� ¼ 1: The central fundamental flutter

region is flanked (above and below) by a higher order flutter mode which is in turn flanked (above

and below) by another higher order flutter mode. Lower resolution computations with higher

maximum k values show that these and additional higher order flutter modes expand to the left to

provide flutter loads for 0pZp1 and 0:5olo4: The flutter load is normal except for a very small,

slightly anomalous region for large l near the top of the primary flutter curve around Z � 0:8:

4.3.3. Free free

As before, the analysis of the free boundary condition is more involved since for a given l and Z

the lower of the OFF and EFF flutter loads provides the governing FF flutter load.

Fig. 4(c) combines the OFF and EFF flutter data to show the dependence of the FF flutter load

on l and Z: An ‘‘O’’ or ‘‘E’’ indicates an Odd or Even mode shape. The load is normal throughout

the entire region.

4.4. Stability regions in the l–Z plane

For a given l and Z the lower of the divergence and flutter loads determines the stability regions

shown in Fig. 5. In Fig. 5, ‘‘D’’ and ‘‘F’’ indicate if Divergence or Flutter provides the governing

instability in that region.

4.4.1. Built in

Fig. 5(a) combines the divergence and flutter data (Figs. 3(a) and 4(a)) to show the stability

regions for the BI plate (with D� ¼ 1:0) in the l–Z plane. The boundary between the ‘‘D’’ and ‘‘F’’

regions shows how the critical value of Z in Fig. 2(a) varies with l:

4.4.2. Simply supported

Fig. 5(b) combines the divergence and flutter data (Figs. 3(b) and 4(b)) to show the stability

regions for the SS plate (with D� ¼ 1:0) in the l–Z plane. The top and bottom boundaries of the

central ‘‘F’’ region shows how the central flutter loop (discussed in Fig. 2(b) for l ¼ 3:5) varies
with l:

4.4.3. Free free

Fig. 5(c) combines the divergence and flutter data (Figs. 3(c) and 4(c)) to show the stability

regions for the FF plate (with D� ¼ 1:0) in the l–Z plane. In Fig. 5(c), ‘‘E’’ and ‘‘O’’ indicate if the

Even or Odd mode provides the governing instability. The lower and upper boundaries of the

central ‘‘EF’’ region show how the lower end of the EFF flutter loop and intersection of the EFF

flutter and OFF divergence curves (discussed in Fig. 2(c) for l ¼ 3:5) varies with l:
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4.5. Divergence and flutter load dependence on D�

Fig. 6 shows the variation of the stability regions for a SS plate with D�: Comparing Fig. 6(a)

showing D� ¼ 0:25; Fig. 6(b) showing D� ¼ 0:5; and Fig. 6(c) showing D� ¼ 1:0 shows the two

primary effects of varying D�: (1) divergence and flutter loads increase with D� as expected; (2) the
range of Z values where the flutter instability governs decreases with D�:
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We conclude by noting that similar effects are observed for the other boundary conditions.

5. Conclusions

This computational study analyzes flutter and divergence instabilities of rectangular, specially

orthotropic plates subject to subtangential loading. Particular attention is paid to dependence of

the buckling mode (divergence or flutter) and buckling load on the degree to which the loading is

subtangential. From a design perspective, the significant conclusion is that the physically

important buckling mode can jump from divergence to flutter and back as the loading changes

from conservative to follower.

Specifically, the paper examines buckling mode and buckling load dependence on: tangential

follower parameter, Z; aspect ratio, l; material orthotropy parameter, D�; and boundary

condition (built in, simply supported, and free free). The primary conclusions are:

(1) For given aspect ratio l and orthotropy coefficient D� ¼ 1 the range 0pZp1 for the

follower parameter is divided into intervals corresponding to different governing instabilities. The

number and size of the intervals as well as the corresponding instability is strongly affected by the

boundary condition. The configuration of the intervals is independent of the aspect ratio, l: The
aspect ratio affects the magnitude of the buckling load and the location of the boundaries between

the stability intervals.

(2) For fixed orthotropy coefficient, D�; the l–Z plane is divided into stability regions with

different governing instabilities. The number and size of the regions as well as the corresponding

instability is strongly affected by the boundary condition.

(3) For a given boundary condition the configuration of the stability regions is independent of

the orthotropy coefficient, D�: The orthotropy coefficient affects only the magnitude of the

buckling load and the size of the stability regions.
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