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Abstract

The mechanical environment of the skeleton plays an important role in the establishment and maintenance of structurally competent bone.

Biophysical signals induced by mechanical loading elicit a variety of cellular responses in bone cells, however, little is known about the

underlying mechanotransduction mechanism. We hypothesized that bone cells detect and transduce biophysical signals into biological

responses via a mechanism requiring annexin V (AnxV). AnxV, a calcium-dependent phospholipid binding protein, has several attributes,

which suggest it is ideally suited for a role as a mechanosensor, possibly a mechanosensitive ion channel. These include the ability to function

as a Ca2+ selective ion channel, and the ability to interact with both extracellular matrix proteins and cytoskeletal elements. To test the

hypothesis that AnxV has a role in mechanosensing, we studied the response of osteoblastic cells to oscillating fluid flow, a physiologically

relevant physical signal in bone, in the presence and absence of AnxV inhibitors. In addition, we investigated the effects of oscillating flow

on the cellular location of AnxV. Oscillating fluid flow increased both [Ca2+]i levels and c-fos protein levels in osteoblasts. Disruption of

AnxV with blocking antibodies or a pharmacological inhibitor, K201 (JTV-519), significantly inhibited both responses. Additionally, our

data show that the cellular location of AnxV was modulated by oscillating fluid flow. Exposure to oscillating fluid flow resulted in a

significant increase in AnxV at both the cell and nuclear membranes. In summary, our data suggest that AnxV mediates flow-induced Ca2+

signaling in osteoblastic cells. These data support the idea of AnxV as a Ca2+ channel, or a component of the signaling pathway, in the

mechanism by which mechanical signals are transduced into cellular responses in the osteoblast. Furthermore, the presence of a highly

mobile pool of AnxV may provide cells with a powerful mechanism by which cellular responses to mechanical loading might be amplified

and regulated.
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Introduction

The mechanical environment of the skeleton is known to

play an important role in the establishment and maintenance

of structurally competent bone. However, the mechanisms

by which biophysical signals exert such biological effects

are unclear. It has been proposed that bone cells are ideally

situated to detect and transduce mechanical signals and alter

the composition of the bone matrix accordingly. Conse-

quently, many cell culture models have been established to

investigate the influence of mechanical loading on bone

cells and as a result many physical stimuli have been shown

to affect bone cell metabolism including direct cell defor-

mation [1], fluid-induced shear stress [2–4], and bioelectric

fields [5]. Such studies have shown that bone cells respond

in a variety of ways to applied mechanical/biophysical

perturbation. For example, fluid shear stress stimulates the

production of intracellular and extracellular messengers

such as intracellular calcium [2,3,6,7], IP3 [8], cAMP [9]

and PGE2 [10], activation of G-proteins [11], NO produc-

tion [4], alterations in the cytoskeleton [12], and gene
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expression [6,12–14]. Experiments such as these clearly

show that bone cells are sensitive to their mechanical

environment. It is unknown, however, how these physical

signals are transduced into cellular responses.

The identity of a ‘‘mechanoreceptor’’ has, thus far,

proved elusive. Membrane ion channels that open and close

in response to mechanical force have been suggested to be

ideal candidate mechanoreceptors. While these channels

have been identified electrophysiologically to exist in a

variety of cell types including bone cells [15–22], little is

known about their molecular structure or how these chan-

nels function. In this study, we proposed to investigate the

role of annexin V (AnxV), a putative ion channel, in bone

cell mechanotransduction. AnxV has previously been pro-

posed as a candidate for a mechanoreceptor, possibly as a

mechanosensitive channel [23,24]. This suggestion was

raised because recombinant AnxV has been shown to have

the ability to bind to collagens in vitro, including collagen I

[25,26] and, therefore, might be stimulated by deformation

in the extracellular matrix. Interestingly, there is also evi-

dence that AnxV may associate with cytoskeletal elements

in addition to extracellular proteins and might therefore be

regulated by changes in or contribute to cytoskeletal struc-

ture [27,28].

AnxV belongs to a group of structurally related Ca2+

binding proteins called annexins, most commonly known

for their ability to bind to phospholipid membranes in a

calcium-dependent manner. AnxV is the most abundant

annexin in bone cells [29–31]. The ion channel activity of

AnxV was first described by Rojas et al. [32] who showed

that purified human AnxV interacted with phospholipid

bilayers at the tip of a patch clamp pipette to form Ca2+

selective channels. To investigate a possible role for AnxV

in bone cell mechanotransduction, we performed experi-

ments in which bone cell responses to oscillating fluid flow

were quantified in the presence and absence of AnxV

inhibitors. We chose oscillating flow as our mechanical

stimulus as it has been proposed as an important biophysical

signal in mechanotransduction in bone [2,33–35]. Indeed

recently, we and others have shown that fluid flow effects

may be more stimulatory to bone cells than direct cell

deformation [7,10,34].

As our cellular responses we have chosen to look at both

intracellular calcium (Cai
2+) and c-fos protein levels. Intra-

cellular calcium (Cai
2+) responses are one of the earliest and

most ubiquitous responses to mechanical load. Cai
2+ plays a

critical role in a diverse number of cellular processes as a

second messenger and, therefore, could have a powerful role

in mechanotransduction. c-fos is an activator protein-1

(AP1) transcription factor subunit, which has been identified

as an important player in bone metabolism [36] and its

expression increased in bone cells in response to biophysical

signals in vivo and in vitro [12,37,38]. To disrupt AnxV

activity, we used an anti-AnxV blocking antibody and K201

(JTV-519), a 1,4-benzothiazepine derivative [39]. K201

(JTV-519) has been shown to inhibit the Ca2+ transport

properties of AnxV [39] and block Ca2+ influx into matrix

vesicles by inhibition of AnxV [40]. In addition, we

examined the effects of oscillating fluid flow on the cellular

location of AnxV.

Materials and methods

Cell culture

The human osteoblastic cell line MG63 was cultured in

minimal essential medium (MEM; Life Technologies, Inc.)

containing 25 mM HEPES, 10% fetal bovine serum (FBS;

Hyclone, Logan, UT), 1% penicillin/streptomycin (Life

Technologies, Inc.) and maintained in a humidified incuba-

tor at 37jC with 5% CO2. Two days before experiments,

cells were subcultured onto either glass slides (75 � 38 �

1.0 mm, 3 � 105 cells/slide) for c-fos and relocation studies

or quartz glass slides (Friedrich and Dimmock, Inc., Mill-

ville, NJ; 76 � 26 � 1.6 mm, 1.5 � 105 cells/slide) for

[Ca2+]i studies.

Oscillating fluid flow

Cells were exposed to fluid flow as previously described

[2,6,7]. Briefly we used two custom-designed parallel plate

flow chambers of similar construction but varying capacity.

For short-term Cai
2+ imaging experiments, we used a vac-

uum sealed flow chamber with a flow channel of 38 � 10 �

0.28mm. For the longer duration, c-fos and annexin reloca-

tion studies we used a larger chamber with a flow channel of

60 � 24 � 0.28 mm. This chamber utilizes a mechanical

clamp to achieve a tight seal and can be assembled in a

sterile environment and kept in an incubator throughout the

flow exposure period. To deliver flow, we used Hamilton

glass syringes custom mounted into a servo pneumatic

loading frame (EnduraTec, Eden, Prairie, MN). To verify

the output of the syringes, we attached an ultrasonic flow

meter (Model 106, Transonic Systems, Ithaca, NY) to the

chamber inlet. We used this system to generate sinusoidally

oscillating flow in each flow chamber at 1 Hz and a peak

shear stress of 20 dyn/cm2. Flow media was MEM with 2%

FBS and 25 mM HEPES. Experiments were performed to

determine the time course of the induction of c-fos protein.

At 60 min, the response was maximal and was not increased

further after 90 min (data not shown). Therefore, in subse-

quent experiments, c-fos was measured at the 60-min time

point.

Cai
2+ imaging

Preconfluent cells were washed with phenol red-free

MEM and 2% FBS solution at 37jC. Cells were then

incubated with the dual excitation fluorescent Ca2+-probe

Fura-2 (acetoxymethyl ester 10 AM, Molecular Probes,

Eugene, OR) for 30 min at 37jC. The cells were then
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washed with fresh MEM and 2% FBS solution, the slide

mounted on the parallel plate flow chamber and placed on

an inverted fluorescence microscope (Nikon Diaphot 300)

and left undisturbed for 30 min. Addition of 25 mM HEPES

to the flow media to control for pH changes had no

significant effect on the calcium response to flow (P >

0.05, n = 5).

The cells were illuminated as described previously

[2,6,7,41,42]. A Metafluor imaging system (Universal Im-

aging, West Chester, PA) was used to sample and record the

emitted light from the cells in the field of view once every 2

s (emission wavelength 510 nm) and Metafluor imaging

software was used to subtract the background fluorescence

from each image and to outline and calculate the 340:380

ratio of light emitted in response to excitation at 340 and

380 nm for each cell in the field of view, as this ratio reflects

[Ca2+]i. A calibration curve was constructed by acquiring

340:380 values (background subtracted) for a series of

solutions of known free Ca2+ concentration (0–39.8 AM,

Molecular Probes) and 1 AM fura2 pentapotassium salt

(Molecular Probes). This calibration curve was used to

convert ratio values from individual cells into [Ca2+]i. To

identify Ca2+ transients, we used a numerical procedure

adapted from mechanical fatigue analysis, known as Rain-

flow Cycle Counting [43]. This simple algorithm reliably

and automatically identifies and determines the amplitudes

of spikes and transients in time history data even when

superimposed over each other or in the presence of back-

ground noise [44]. We have previously used this algorithm

to identify transients in Cai
2+ in chondrocytes and bone cells

[2,6,7,41,42]. We defined a response as a transient increase

in Cai
2+ of 80 nM or greater. Data were collected for 1 min at

the start of each experiment before flow and then for a

period of 3 min during flow.

AnxV inhibitors

To disrupt AnxV, bone cells were exposed to anti-AnxV

antibody before flow (40 Ag/ml for 24 h, rabbit polyclonal

antibody, full-length AnxV, Santa Cruz, Santa Cruz, CA),

control Ab (40 Ag/ml for 24 h, COX -2, goat polyclonal

antibody, carboxy terminus, Santa Cruz), or standard media

for 24 h. All antibodies were prepared such that they were

free of sodium azide. In other experiments, cells were

exposed to K201 (JTV-519) before flow (100 AM for 30

min) to disrupt AnxV activity, DMSO (10 Al/100 ml for 30

min) as a vehicle control, or standard media for 30 min.

K201 (JTV-519) was kindly supplied by Japan Tobacco

Inc., Tokyo, Japan.

Cell fractionation

To determine the effects of OFF on AnxV relocation,

MG63 cells were exposed to OFF at 1 Hz for either 1 or 3

h after which cell membrane, cytosolic, nuclear extract,

and nuclear membrane fractions were isolated by differen-

tial centrifugation as previously described [45]. Control

cells were mounted in flow chambers but not subjected to

flow.

Briefly, cells were washed in homogenization buffer (10

ml of a salt solution containing 20 mM tetrasodium pyro-

phosphate, 20 mM sodium phosphate, 1 mM magnesium

chloride, 0.1 mM EDTA, 300 mM sucrose, and 100 Al of a

protease inhibitor cocktail containing 0.8 mM benzamidine,

1.0 mM iodoacetamide, 1.1 AM leupeptin, 0.7 AM pepstatin

A, 23 Al of 0.23 mM PMSF, and 5 Al of 76.8 nM aprotinin),

scraped from the glass surface and transferred to a dounce

homogenizer. After 30–40 strokes with a loose fitting

pestle, cells were centrifuged for 10 min at 700 � g. The

pellet was resuspended in a sucrose solution (320 mM

sucrose, and 3 mM MgCl2) and used for nuclear fraction

isolations. The supernatant was centrifuged for 15 min at

38,000 � g using a Beckman Ultracentrifuge (Sw55Ti,

Beckman Instruments Inc., Palo Alto, CA) to separate the

cell membrane (pellet) from the cytosol (supernatant). The

cell membrane pellet was resuspended in 50 Al of homog-

enization buffer [45].

The nuclear pellet that had been resuspended in a 320

mM sucrose/3 mM MgCl2 solution was split in two with

half being used for nuclear extract isolation and half for

nuclear membrane isolation. To obtain the nuclear extract,

the sample was centrifuged at 700 � g and the pellet

resuspended in 150 Al of a low-salt buffer solution (20

mM HEPES, pH 7.9, at 4jC, 25% glycerol, 1.5 mM

MgCl2, 0.02 M KCl, 0.1 mM EDTA, 0.2 mM PMSF,

and 0.5 mM DTT). One hundred fifty microliters of a

high-salt buffer was added to the solution in a dropwise

fashion (20 mM HEPES, pH 7.9, at 4jC, 25% glycerol,

1.5 mM MgCl2, 1.2 M KCl, 0.1 mM EDTA, 0.2 mM

PMSF, and 0.5 mM DTT). The solution was then allowed

to extract for 30 min while gently mixing. Following the

extraction, the solution was centrifuged for 30 min at

25,000 � g, and the supernatant recovered as the nuclear

extract. For the nuclear membrane isolation, the 320 mM

sucrose/3 mM MgCl2 solution was centrifuged at 700 � g

for 10 min and the cell pellet was resuspended in 100 Al of

0.1 mM MgCl2 and 50 Ag/ml deoxyribonuclease I (DNase-

I), then 400-Al digestion buffer [10 mM Tris–HCl, pH 8.5,

containing 0.1 mM MgCl2, 5 mM B-mercaptoethanol, and

10% sucrose (w/v)] was added and incubated at room

temperature for 15 min. The reaction was terminated with

an equal volume of ice-cold water added to the solution

and centrifuged for 15 min at 38,000 � g. Subsequently,

the pellet was resuspended in 500-Al digestion buffer

containing 10 Ag/ml of DNase I and incubated at room

temperature for 20 min. This second reaction was termi-

nated with an equal volume of ice-cold water and the

solution was centrifuged for 15 min at 38,000 � g. The

resulting pellet was taken as the nuclear membrane and

was resuspended in phosphate-buffered saline (PBS).

AnxV levels in each fraction were assessed by Western

blot. Densitometry was used to quantify differences in
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AnxV levels between flow and no flow control cell

fractions.

Western blot analysis for AnxV and c-fos

Before electrophoresis, protein concentration was deter-

mined using a commercial assay, based on the Lowry

method (Bio-Rad). Equal amounts of protein (5 Ag) were

loaded onto 7.5% SDS-polyacrylamide gels, resolved by

electrophoresis, and transferred to nitrocellulose membranes

that were blocked in 5% nonfat milk in Tris-buffered saline

[1� TBST (Bio-Rad) with 0.05% Tween-20] for 1 h at room

temperature. The membranes were then incubated for 2 h at

room temperature with a 1:200 dilution of rabbit anti-AnxV

polyclonal antibody (Santa Cruz) in blotto (5% non-fat milk

in TBST), or for 1 h at room temperature with a 1:500

dilution of rabbit anti-c-fos polyclonal antibody (Santa

Cruz) in blotto. The membranes were washed three times

in TBST and incubated with goat anti-rabbit IgG linked to

horseradish peroxidase (Jackson ImmunoResearch Labora-

tories, West Grove, PA) for 45 min diluted 1:3000 for AnxV

and for 1 h diluted 1:2500 for c-fos. After three additional

washes with TBST and one wash in 1� TBS, the mem-

branes were soaked in ECL detection reagents for 1 min

(Amersham, UK). The sheet was then exposed to X-ray

film.

Data analysis

From the Rainflow analysis of the calcium response data,

the mean F SE was computed for each treatment. To

compare observations of control, control Ab, and anti-AnxV

Ab, a repeated-measures ANOVAwas utilized with Bonfer-

roni/Dunn post hoc testing. Similarly, an ANOVA was

utilized to compare control, DMSO control, and K201

(JTV-519)-treated groups. ANOVAs were used to compare

both the percentage of cells responding and mean amplitude

of responding cells.

To compare c-fos levels between flow and no flow

conditions and to assess differences in AnxV protein levels

in the cell fractions, paired t tests were performed. Data

were normalized to the no flow control for each treatment

studied or for each cell fraction and expressed as mean F

SE. Optical densities, as determined using densitometry,

were used to quantify protein levels.

Results

Role of AnxV in OFF-induced Cai
2+ responses

As we have previously shown [2,6,7,41,42,46], osteo-

blastic cells respond to OFF with a robust and transient

increase in Cai
2+ when flowed in standard media (Ctrl) (Figs.

1A, 2A). This response was attenuated in the presence of

AnxV blocking antibodies (AnxV Ab) or K201 (JTV-519)

(Figs. 1A, 2A). The response was unaffected in the presence

of control antibodies (Ctrl Ab) or a DMSO control (DMSO

Ctrl) (Figs. 1A and 2A); 75.5 F 3.9% of the cells in

standard media responded to fluid flow with an increase

in Cai
2+ and 63.6 F 12.8% responded in the presence of a

control antibody (Fig. 1B). However, in the presence of

AnxV blocking antibodies, the response was significantly

reduced to 27.3 F 11.3% (Fig. 1B). Similarly, 72.4 F 6.9%

and 69.1 F 8.1% of cells responded in control and DMSO

treated cells, whereas in the presence of K201 (JTV-519),

the response was significantly reduced to 30.4 F 8.3% (Fig.

2B). There was no significant difference with regards to

mean Cai
2+ response amplitudes under the conditions tested.

Mean Cai
2+ response amplitudes were 152 F 23, 190 F 16,

and 133 F 30 nM for control, control Ab, and blocking Ab,

respectively (Fig. 1B). Mean Cai
2+ response amplitudes were

Fig. 1. (A) Effect of OFF (20 dyn/cm2, 1 Hz) on Ca i
2+ in MG63 cells in standard media (Ctrl), the presence of a control antibody (Ctrl Ab), and AnxV blocking

antibody (AnxVAb). Each line represents the Cai
2+ signal from a single cell and the arrow indicates the onset of flow. (B) Mean percentage of cells showing a

Ca i
2+ response and mean amplitude of the response to OFF (20 dyn/cm2, 1 Hz) in control media (Ctrl, n = 6 slides), the presence of a control antibody (Ctrl Ab,

n = 4 slides), or anti-AnxV antibody (AnxV Ab, n = 6 slides). All bars represent the mean percentage of cells responding F SEM, or mean Ca i
2+ response

amplitude of those cells responding F SEM. *P < 0.05, statistically significant difference from control.
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132 F 26, 154 F 22, and 108 F 18 nM for control, DMSO

control, and K201 (JTV-519), respectively (Fig. 2B).

Role of AnxV in OFF-induced c-fos protein level increases

c-fos protein levels were significantly increased in cells

exposed to OFF for 60 min compared to no flow controls

when cells were in standardmedia (Ctrl) or exposed to control

antibodies (Ctrl Ab). This response was inhibited, however,

in cells exposed toAnxVblocking antibodies (AnxVAb) (P>

0.05) (Fig. 3). Normalized protein levels, expressed as optical

densities, were 1.51F 0.10 and 2.14F 0.27, in cells exposed

to OFF in standard media and in the presence of control Ab,

respectively (Fig. 3, the data were normalized to no flow

control levels). In the presence of anti-AnxV Ab, cells

exposed to flow demonstrated significantly decreased c-fos

levels, 1.05 F 0.06 (Fig. 3). Oscillating flow-induced

increases in c-fos protein expression were also significantly

attenuated in cells pre-incubated for 30 min before flow with

100 AM K201 (JTV-519) (data not shown).

AnxV relocation in response to OFF

There was no significant difference between the 1- and

3-h data for AnxV location, and therefore, these data were

combined. With the data normalized to no flow control,

AnxV protein levels significantly increased in cells ex-

posed to OFF vs. no flow controls at both the cell and

nuclear membranes (n = 7) (Fig. 4). There was no

significant increase in AnxV protein levels in either the

cytosol or nuclear extract in OFF-stimulated compared to

no flow controls (n = 7) (Fig. 4).

Fig. 3. Optical densities and representative Western blot for c-fos protein

levels in cells exposed to standard media (Ctrl, n = 5), control antibody

(Ctrl Ab, n = 3), or anti-AnxVantibody (AnxVAb, n = 3) before 60 min of

no flow (NF) or OFF (1 Hz, 20 dyn/cm2). All bars represent the mean

optical density normalized to no flow under the same conditions F SEM.

*P < 0.05, statistically significant difference from no flow.

Fig. 4. Optical densities and representative Western blot for no flow control

(NF) cell fractions and cell fractions exposed to OFF (1 Hz, 20 dyn/cm2) for

1–3 h; cytosolic fraction (CF), cell membrane fraction (CMF), nuclear

membrane fraction (NMF), and nuclear extract fraction (NEF). Data were

normalized to the no flow control for each cell fraction. All bars represent

the mean optical densities F SEM. *P < 0.05, statistically significant

difference from control.

Fig. 2. (A) Effect of OFF (20 dyn/cm2, 1 Hz) on Cai
2+ in MG63 cells in standard media (Ctrl), the presence of DMSO as a vehicle control (DMSO Ctrl), and

K201 (JTV-519). Each line represents the Ca i
2+ signal from a single cell and the arrow indicates the onset of flow. (B) Mean percentage of cells showing a Ca i

2+

response and mean amplitude of the response to OFF (1 Hz, 20 dyn/cm2) in control media (Ctrl, n = 7 slides), DMSO (DMSO Ctrl, n = 6 slides), or K201 (JTV-

519) (K201, n = 5 slides). All bars represent the mean percentage of cells responding F SEM, or mean Cai
2+ response amplitude of those cells responding F

SEM. *P < 0.05, statistically significant difference from control.
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Discussion

Our data confirm that osteoblast-like cells are sensitive to

biophysical signals, and in addition, suggest that AnxV is

involved in the mechanism by which mechanical signals

elicit intracellular responses such as an increase in [Ca2+]i
and changes in c-fos protein levels. The mechanism, or

mode of action of AnxV in the mechanosensory pathway,

however, is less clear.

Although much is known of the structure of AnxV,

significantly less is known about its cellular functions.

Annexins as a family have been associated with a wide

variety of functions including membrane organization, exo-

cytosis, endocytosis, ion channel regulation, ion channel

activity, and membrane to cytoskeleton linkage [47]. One

possibility, therefore, is that AnxV is acting as a calcium

influx pathway in a role as an ion channel. Indeed, there is

accumulating evidence to support the role of AnxV as a

calcium selective channel. The ion channel activity of AnxV

was first described by Rojas et al. [32] who showed that

purified human AnxV interacted with phospholipid bilayers

at the tip of a patch clamp pipette to form Ca2+ selective

channels. These channels were blocked by the lanthanide ion,

La3+, but were unaffected by the voltage-sensitive L-type

Ca2+ channel blocker nifedipine [32]. Subsequently, electro-

physiological studies have shown that ion channel activity of

purified AnxV was very similar to channel activity observed

when AnxV-rich matrix vesicles were fused with lipid

bilayers [48]. Further confirmation that AnxV may act as a

Ca2+ entry pathway in the cell membrane came from Ca2+

influx studies using large unilamellar vesicles (LUV). AnxV,

added to suspensions of LUV, resulted in an influx of Ca2+

ions as measured using fura-2, which increased as the

concentration of AnxV was raised [49]. Furthermore, neither

denatured AnxV nor an AnxV mutant lacking the N-terminal

domain elicited a Ca2+ influx [49]. Both Zn2+ and a novel 1,4-

benzothiazepine derivative, K201 (JTV-519), were subse-

quently shown to block this Ca2+ influx [48,50]. In addition,

AnxV also mediated Ca2+ influx into liposomes, which was

inhibited by anti AnxV antibodies and by zinc and cadmium

[51]. This evidence strongly suggests that AnxV forms Ca2+

channels in vitro. Subsequently, AnxV has been shown to

mediate Ca2+ influx into lymphocytic B-cells [52]. In that

study, Kubista et al. [52] demonstrated that peroxide induced

AnxV membrane insertion and that peroxide-induced Ca2+

influx in B-cells was inhibited in cells lacking AnxV. These

data, taken together, support the idea that AnxV may play a

role as a calcium channel in vivo. If AnxV is acting as a

channel in bone cells then this raises questions as to how the

channel is activated.

Interestingly, AnxV has been proposed as a candidate

for a mechanosensitive channel [23,24]. This suggestion

was raised because recombinant AnxV has been shown to

have the ability to bind to collagens in vitro, including

collagen I [25,26] and, therefore, might be stimulated by

deformation in the extracellular matrix. For extracellular

components to play a role, AnxV must function as a

transmembrane protein or be present extracellularly. In-

deed, there is evidence that AnxV can form a hexameric

transmembrane complex [53] and AnxV has been found

localized on the surface of chick chondrocytes and fibro-

blasts [25,54,55]. AnxV has also been shown to be

released extracellularly by bone cells [29], though whether

it functions as a transmembrane complex or extracellularly

is unknown. There is evidence that AnxV can bind to

cytoskeletal elements. For example, AnxV was shown to

interact and co-localize with actin in human platelets [27]

and an AnxV-containing complex, which was also recog-

nized by antibodies against actin, was extracted from

detergent-solubilized platelet membranes [27]. A recent

study has also shown that AnxV binds to the h5 integrin

subunit [28]. Evidence that AnxV may associate with

cytoskeletal elements in addition to extracellular proteins

suggests that AnxV may function most effectively in a

mechanosensing apparatus as a transmembrane complex.

An ion channel with both extracellular and intracellular

binding components, which would serve to effectively

transmit force to the channel protein, might be an effective

configuration for a mechanotransduction apparatus. Such

an apparatus has been suggested to operate in mammalian

inner ear hair cells, where deflection of apical stereocilia,

which are connected to one another via extracellular tip

links, opens ion channels [56–58]. In addition, the channel

is thought to be linked to the actin cytoskeleton via a

molecular complex composed of myosin [59].

In this study, we showed that oscillating fluid flow

increased both [Ca2+]i and c-fos protein levels in osteoblasts

and that disruption of AnxV decreased both responses. It is

possible, therefore, that both responses may be part of the

same signal transduction pathway. Indeed, there is strong

evidence to suggest a link between Ca2+ and c-fos in many

cell types [60]. c-fos induction has been shown to be

blocked by external Ca2+ chelation, specific inhibitors of

L-type Ca2+ channels, and calmodulin agonists [61–64].

Membrane depolarization has been shown to lead to c-fos

expression by the activation of L-type voltage-sensitive

calcium channels [63,65]. Additionally, intracellular calci-

um levels have also been shown to stimulate c-fos mRNA

expression [66] as has a Ca2+ ionophore [67,68].

In addition, our data suggest that mechanical signals also

modulate the cellular location of AnxV. Interestingly, annex-

ins are not permanently associated with phospholipid mem-

branes, but exist in dynamic equilibrium between the

cytosol and both nuclear and plasma membranes. Studies

have shown that a rise in Cai
2+ causes relocation of AnxV to

both the nuclear and plasma membranes in many cell types

including bone cells, fibroblasts, and neuroblastoma cells

[29,69–71]. While these studies used supraphysiological

levels of Ca2+ to induce relocation, both physiological levels

of Ca2+ and the physiological agonist thrombin were shown

to induce relocation and binding of AnxV to platelet

membranes [72,73] and ATP caused the relocation of AnxV
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to both nuclear and plasma membranes in bone cells [29].

Experiments have shown that the recruitment of AnxV to

membranes is rapid, occurring after less than 10 s of Cai
2+

being elevated in bone cells and fibroblasts [29,69]. Of

particular interest to this study is that annexins have been

shown to relocate to the plasmalemma in response to

mechanical stimulation in parenchyma cells of Bryonia

dioica plants [74]. The presence of a highly mobile pool

of AnxV may provide cells with a powerful mechanism by

which mechanically induced Ca2+ signaling might be am-

plified and regulated.

In summary, our data support the idea of AnxV func-

tioning as a Ca2+ channel, or a component of the Ca2+

signaling pathway, in the mechanism by which mechanical

signals are transduced into an appropriate cellular response

in the osteoblast.
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