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Abstract

The flow of a low-density polyethylene in a flat die is

simulated using the axisymmetric and planar elongational

viscosities estimated in an earlier publication by Beaupre

and Gupta. Elongational viscosity is found to have only a
limited effect on the velocity distribution at the die exit.

However, the predicted pressure drop in the die and

temperature distribution at the die exit changed

significantly when the effect of elongational viscosity is

included in the simulation.

Introduction

Screw extruders [1] are used to manufacture plastic

parts for a large number of end-use applications such as

pipes, sidings for building, seals for car windows, etc.

Even though the same extruder can be used to

manufacture many of these plastic parts, a different die is

required for each product. The die determines the

dimensions and quality of the extruded products.

Therefore, use of an optimally designed die is crucial for

the quality of the extruded parts. The main task in design
of an extrusion die is to optimize the die channel geometry

such that uniform velocity and temperature distributions

are obtained at the die exit, without excessively increasing

the pressure drop in the die [2]. This requires, an analysis

of the velocity, pressure and temperature fields in the

polymeric flow in the die. However, at present, most die

designs for polymer extrusion are based upon the past

experience of the designer, trial and error, or at most a

flow simulation using the generalized Newtonian
formulation [3 – 6]. A generalized Newtonian constitutive

equation can accurately capture the strain-rate dependence

of the shear viscosity of a polymer. However, the

elongational viscosity predicted by a generalized

Newtonian formulation is generally much smaller than the

actual elongational viscosity of a polymer. Therefore, in

applications involving elongation-dominated flows, such

as extrusion dies, the velocity, pressure and temperature
fields predicted by the generalized Newtonian formulation

can have large errors. Even though some of the

viscoelastic constitutive equations [7] can predict the high

elongational viscosity of polymers, difficulty in

convergence of viscoelastic flow simulations, along with

the large computation time required for the simulation,

and difficulty in finding the values of various parameters

in the constitutive equations has limited the application of

viscoelastic flow simulation in design of extrusion dies.

In the present work, the PELDOM software [8] was

used for a three-dimensional simulation of the flow in a flat

extrusion die. To simulate a polymeric flow, the software
accounts for strain-rate dependence of the shear as well as

the elongational viscosity of the polymer. For a three-

dimensional simulation of a polymeric flow, the software

requires knowledge of the axisymmetric and planar

elongational viscosities of the polymer. The method used

in the present work for estimating the elongational

viscosity of a polymer is discussed next.

Elongational Viscosity Estimation

In the present work, the axisymmetric and planar

elongational viscosities of a low-density polyethylene

(Dow 132i) estimated by Beaupre and Gupta [9] were used

to investigate the effect of elongational viscosity on the

flow in a flat die. Beaupre and Gupta [9] used the entrance-

flow method to estimate the axisymmetric and planar

elongational viscosities of the low-density polyethylene
(LDPE). In the entrance-flow method, the large pressure

drop (entrance loss) encountered near an abrupt contraction

in a channel (entrance flow), which increases as the

elongational viscosity of the fluid is increased, and also

depends on the flow rate in the channel, is used for an

indirect measurement of the strain-rate dependence of the

elongational viscosity of a polymer. In particular, Beaupre

and Gupta [9] optimized the value of the four elongational

viscosity parameters ( δ ,
1λ , 2λ ,m ) in the Sarkar-Gupta

elongational viscosity model [10] (Eqn. 1) such that the

difference between the experimental value of the entrance

pressure loss from a capillary or slit rheometer and the

corresponding predictions from a finite element simulation

is minimized.
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where )~:~(2 eeeII = is the second invariant of the strain-

rate tensor 2/)ˆˆ(~ Tvve ∇+∇= , with v̂ being the velocity

of the fluid,
rT , Trouton ratio at low shear rate, is 3 for an

axisymmetric flow and 4 for a planar flow, and
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210 ,,, λλδη and m are material parameters. To capture

the strain-rate dependence of the shear viscosity of a

polymer, Carreau model [11] is used in this work:

2

1

2

0 ))(1(

−

+=
n

IIs eληη (2)

where
0η , the zero-shear viscosity, is the same as in Eqn.

(1), and λ and n are the two new material parameters.
The Arrhenius model [11] is used here to capture the

temperature dependence of
0η in Eqns. (1) and (2):













=
T

T
A aexp0η (3)

where A and
aT are material parameters, and T is the

temperature of the polymer.

For Dow 132i, Beaupre and Gupta [9] gave the
Carreau model parameters for shear viscosity at 215 and
230 oC. The values of the Carreau model parameters given
by Beaupre and Gupta [9] were used in the present work to
obtain the parameters for the Carreau-Arrhenius model for
LDPE:

0.469=A Pa ⋅ s, 7.2721=aT K

6509.0=λ s, 401.0=n .

By using the entrance-flow method for elongational
viscosity estimation, for the LDPE at 215 and 230 oC,
Beaupre and Gupta [9] also gave the values of elongational
viscosity parameters for the Sarkar-Gupta model. These
values from reference [9] were used in the present work to
obtain the temperature-dependence of Sarkar-Gupta model
for axisymmetric and planar elongational viscosities.

Axisymmetric: 0=δ , 02242.02 =λ s, 349.0=m .

Planar: 3.37=δ , 795.111 =λ s, 4571.02 =λ s, 45.0=m .

It should be noted that λ in the Carreau model for shear
viscosity, and

1λ and
2λ in the Sarkar-Gupta model for

elongational viscosity depend upon temperature.

Temperature dependence of λ ,
1λ and

2λ can be easily

obtained by using the time-temperature superposition along
with the Arrhenius model (Eqn. 3).

Based upon the values of the parameters for the
Carreau model and the Sarkar-Gupta model given above,
the shear and elongational viscosities of the LDPE at 215
and 230 oC are shown in Fig. 1. Fig. 1 also shows the
elongational viscosity predicted by Cogswell’s [13] and
Binding’s [14] analyses. In general, the elongational
viscosity estimated by the Cogswell’s and Binding’s
analyses are higher than the corresponding estimations by
optimizing the values of elongational viscosity parameters
in the Sarkar-Gupta model. The discrepancy is particularly
large for the planar elongational viscosity. The predictions
from Cogswell’s analysis in Fig. 1 show that the average
elongation rate for the experimental data on planar
entrance loss is in the transition region between elongation
thickening and elongation thinning portions of the
elongational viscosity curve, which might have resulted in

the large difference between the prediction from the
Cogswell’s and Binding’s analyses and those from the
finite element simulation by Beaupre and Gupta [9]. Since
the experimental data for the axisymmetric entrance flow is
in the power-law region of the elongational viscosity, the
predictions of Beaupre and Gupta are in better agreement
with those from the Cogswell’s and Binding’s analyses.

Effect of Elongational Viscosity on the Flow in

a Flat Die

In this section, the shear and the axisymmetric and
planar elongational viscosities for LDPE, given in the last
section, are used for a three-dimensional simulation of the
flow in a flat extrusion die. Fig. 2 shows the geometry and
the finite element mesh for the flat die used in this work.
The finite element mesh has 35,375 nodes and 166,090
elements. The geometric parameters for the flat die in Fig.
2, which are taken from reference [6], are given in Table 1.
The die has a relatively small primary manifold and a long
secondary manifold before the land near the die exit. A
triangular preland section is located between the primary
and secondary manifolds. The extra pressure drop near the
middle of the triangular preland compensates the non-
uniform pressure in the primary manifold which decreases
with distance from the feed point. The tetrahedral finite
elements employed in this work, use a linear interpolation
for pressure and temperature, whereas a linear interpolation
enriched with a piecewise-linear bubble function is used
for the velocity interpolation over tetrahedral finite
elements [15]. However, the velocity equations
corresponding to the bubble node are eliminated at the
element level using static condensation [16], resulting in a
highly efficient finite element simulation.

Fig. 3 compares the velocity distributions in the mid-
plane of the flat die predicted by the generalized
Newtonian formulation (Fig. 3 a) and by including the
effect of elongational viscosity on the flow (Fig. 3 b). The
velocity distributions in Figs. 3 (a) and (b) have some
minor differences only. The velocity distribution at the exit
of the flat die predicted by including the effect of
elongational viscosity (Fig. 3 b) is slightly more uniform.
Accordingly, for the same flow rate in the die, the
maximum velocity in Fig. 3 (b) (0.304 m/s) is slightly
lower than that in Fig. 3 (a) (0.306 m/s).

The goal in design of a flat die is to obtain a uniform
thickness across the width of the extruded sheet. The
velocity and temperature distributions across the width of
the die exit can significantly affect the thickness of the
sheet. The sheet is generally thicker at the locations with
higher velocity at the die exit. Accordingly, in comparison
to the sheet thickness near the two ends, the LDPE sheet
extruded by the flat die in Fig. 2 is expected to have a
slightly larger thickness near the center. Except at the small
regions near the ends, the predicted velocity in most of the
die exit is quite uniform. Therefore, the die in Fig. 2 is well
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balanced for LDPE. Since the velocity distributions in Fig.
3 (a) and (b) are very similar, it may be expected that the
elongational viscosity of LDPE has only a minor effect on
the thickness of the extruded sheet. However, the
temperature of the plastic at the die exit also affects the
final sheet thickness. If the velocity across the die exit is
uniform, because of the higher shrinkage during cooling of
the sheet, thickness is expected to be smaller at the
locations with higher temperature. Fig. 4 compares the
temperature distributions in the mid plane of the flat die
predicted by a generalized Newtonian formulation (Fig. 4
a) and by including the effect of elongational viscosity
(Fig. 4 b). The temperature distributions at the die exit in
Figs. 4 (a) and (b) are significantly different, with the
temperature at many locations along the die exit in Fig. 4
(b) about 8 degrees higher than that in Fig. 4 (a). The
difference in the temperature in Figs. 4 (a) and (b) can
affect the final thickness of the extruded sheet. It is noted
that the main difference in the temperature distributions in
Figs. 4 (a) and (b) is in the land near the exit of the die.
Away from the exit, the temperature distributions in Figs. 4
(a) and (b) have some minor differences only. In the die
shown in Fig. 2, just before the land, there is a large
reduction in the die thickness. The flow in this contraction
region before the land is highly elongation dominated. In
the plane of symmetry parallel to the thickness direction,
Fig. 5 shows the temperature distribution in this
elongation-dominated region near the exit of the flat die. It
is evident in Fig. 5 that the temperature of polymer
predicted in the elongation-dominated region increases
significantly as the effect of elongational viscosity is
included in the simulation. With the effect of elongational
viscosity included in the simulation, extra work is done to
push the polymer through the elongation-dominated
region. This extra work is converted into heat resulting in
the higher temperature in the converging region before the
land. In other words, in elongation-dominated flows the
heat generated due to viscous dissipation strongly depends
on the elongational viscosity of the polymer. This extra
heat generated due to the high elongational viscosity of the
polymer, which is being captured by the flow simulation, is
convected along the die land, resulting in the higher
temperature at the exit in Figs. 4 (b) and 5 (b).

Fig. 6 compares the predicted pressure distributions in
the flat die by a generalized Newtonian formulation (Fig. 6
a) and by including the effect of elongational viscosity on
the flow (Fig. 6 b). When the effect of elongational
viscosity is included in the simulation (Fig. 6 b), the

predicted pressure drop across the die is about 17% larger
than the pressure drop predicted by the generalized
Newtonian formulation (Fig. 6 a). The larger pressure in
Fig. 6 (b) implies that in a screw extruder, if a constant
pressure is available at the die entrance, the actual flow
rate in the die will be smaller than the flow rate predicted
by a flow simulation using the generalized Newtonian
formulation.

Conclusions

The axisymmetric and planar elongational viscosities
of a low-density polyethylene, estimated by Beaupre and
Gupta [9] using entrance-flow method, were used in the
present work to simulate the flow in a flat die. For the flow
of LDPE in the flat die used, the elongational viscosity is
found to have only a minor effect on the velocity at the die
exit. However, the predicted pressure drop in the die and
temperature distribution at the die exit changed
significantly when the effect of elongational viscosity was
included in the simulation.
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Table 1: Geometric parameters [6] for the flat die in Fig. 2.

Lengths cm (inches)

Die width
Die length (including channel)
Inlet width
Manifold center depth
Manifold side depth
Manifold center flat length (including radius)
Manifold side flat length (including radius)
Manifold end sweep length
Preland gap
Preland center length
Preland side length
Secondary manifold center length
Secondary manifold side length
Secondary manifold depth
Land length
Land gap in center

101.6 (40)
33.0 (13)
10.16 (4)
3.81 (1.5)
1.02 (0.4)
1.52 (0.6)
1.02 (0.4)
10.16 (4)
0.61 (0.24)
5.08 (2)

0.00254 (0.001)
5.08 (2)
5.08 (2)

0.635 (0.25)
2.54 (1)

0.102 (0.04)

Angles Degrees

Manifold backwall angle
Manifold angle
Secondary manifold angle

85o

20o

20o

e
II
=γ, √3ε(axisymmetric), 2ε(planar)(s-1)

η
s
,
η
e
a
,
η
e
p
(P
a
.s
)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

η
s
carreau (215

o
C)

η
ea
optimization (215

o
C)

η
ep
optimization (215

o
C)

η
ea
Binding (215

o
C)

η
ep
Binding (215

o
C)

η
s
carreau(230

o
C)

η
ea
optimization (230

o
C)

η
ep
optimization (230

o
C)

η
ea
Binding (230

o
C)

η
ep
Binding (230

o
C)

η
s
experimental (215

o
C)

η
s
experimental (230

o
C)

η
ea
Cogswell (215

o
C)

η
ea
Cogswell (230

o
C)

η
ep
Cogswell (215

o
C)

η
ep
Cogswell (230

o
C)

ηep Binding

η
ea
Binding

η
s

η
ea

η
ep

. .

η
ep
Cogswell

η
ea
Cogswell

.

Fig. 1 Variation of shear ( sη ) and elongational

( epη (planar), eaη (axisymmetric) ) viscosities

of LDPE with the second invariant of strain-

rate tensor ( IIe ).

Fig. 2 Finite element mesh in the flat die.
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(a) (b)

Fig. 3 Velocity distribution in the mid-plane of the flat
die. (a) Carreau model with generalized
Newtonian formulation, (b) Carreau model for
shear viscosity along with Sarkar-Gupta model for
elongational viscosity.

(K) (K)
(a) (b)

Fig. 4 Temperature distribution in the mid-plane of the
flat die. (a) Carreau model with generalized
Newtonian formulation, (b) Carreau model for
shear viscosity along with Sarkar-Gupta model for

elongational viscosity.

(a)

(b)

Fig. 5 Temperature distribution in the mid-plane parallel
to the thickness direction of the flat die. (a)
Carreau model with generalized Newtonian
formulation, (b) Carreau model for shear viscosity
along with Sarkar-Gupta model for elongational

viscosity.

(Pa) (Pa)
(a) (b)

Fig. 6 Pressure distribution in the mid-plane of the flat
die. (a) Carreau model with generalized
Newtonian formulation, (b) Carreau model for
shear viscosity along with Sarkar-Gupta model for
elongational viscosity.
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