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Added Stability Lobes in
Machining Processes That Exhibit
Periodic Time Variation, Part 1:
An Analytical Solution
An added family of stability lobes, which exists in addition to the traditional stability
lobes, has been identified for the case of periodically time varying systems. An analytical
solution of arbitrary order is presented that identifies and locates multiple added lobes.
The stability limit solution is first derived for zero damping where a final closed-form
symbolic result can be realized up to second order. The un-damped solution provides a
mathematical description of the added lobes’ locations along the speed axis, an added-
lobe numbering convention, and the asymptotes for the damped case. The derivation for
the damped case permits a final closed-form symbolic result for first-order only; the
second-order solution requires numerical evaluation. The easily computed analytical so-
lution is shown to agree well with the results of the computationally intensive numerical
simulation approach. An increase in solution order improves the agreement with numeri-
cal simulation; but, more importantly, it allows equivalently more added lobes to be
predicted, including the second added lobe that cuts into the speed regime of the tradi-
tional high-speed stability peak. @DOI: 10.1115/1.1765137#

Introduction

It is well known that when increasing spindle speed to increase

productivity the machining stability limit undergoes repeated in-

creases and decreases. These increases and decreases result in

peaks in the stability limit at well understood speeds—those

where the dominant modal frequency is an integer multiple of the

tooth frequency. Machining in the speed range around the two

highest speed peaks is often referred to as high-speed machining

@1#. Beyond the final highest-speed peak, the stability limit is un-

derstood to increase indefinitely with a further increase in speed.

Operating at spindle speeds above about 1.5 times the dominant

modal frequency is referred to here as ultrahigh-speed machining.

Research has led to a good understanding of the machining

stability problem from a traditional system feedback perspective

@2#, a frequency-domain perspective @3–5# as well as an energy

perspective @6–8#, and the root-locus approach @9#. The funda-

mental nature of machining stability is well understood for cases

in which each tooth is in contact with the workpiece at all times

and the nominal machining force is constant over time.

During intermittent machining, each tooth periodically enters

and exits the cut due to process kinematics and/or workpiece ge-

ometry. Stability of intermittent machining processes is also pre-

sumed to be well understood based on an evolution of studies

focused on industrially used processes, in particular milling pro-

cesses @5,6,10–12#. A goal of this work is to better understand the

effect on stability of a periodically time varying process force,

which often involves intermittency.

An added set of stability lobes is found to exist for periodic

process loading, in both intermittent and continuous machining. In

parallel with and independent of the research reported here, others

have also discovered this phenomenon, most referring to it as

‘‘lobe splitting.’’ In the present work, a one-dimensional orthogo-

nal process is employed to facilitate an understanding of the basic
effects of intermittency and time variation through simulation and
physical experiments.
Davies et al. @14,15# observed the added lobes in low-

immersion end milling where there exist substantial periods of
free vibration ~no engagement of any teeth!. Based on time finite
elements, Bayly et al. @16# provide a solution for interrupted turn-
ing, which had been noted by Davies et al. to be a good represen-
tation of low-immersion milling. These works, focusing on low
immersions ~e.g., up to 10%!, show good agreement between the
analytical solutions and numerical simulations. Insperger and
Stépán @17# predict the ultrahigh-speed added lobe—as referred to
here—which begins at tooth frequencies that are twice the natural
frequency. Their work differs from the others in that it applies in
the absence of free vibration. The first presentation resulting from
our effort @18# is in agreement with those works; a primary dif-
ference lies in the generalization of the study/analysis here:
• it observes/predicts multiple added lobes for arbitrary levels

of immersion, including cases where no periods of free vibration
exist, and
• it considers/allows-for arbitrary overlap factor, including zero

overlap.
Part 1 of this paper presents an analytical solution that locates

the added lobes at only a fraction of the computational burden of
numerical simulation and gives greater insight to the problem.
Part 2 then provides a physical experimental study across a range
of immersion levels that not only confirms the existence of the
added lobes but also shows good agreement with the solution.
It also employs the analysis of Part 1 to demonstrate the ef-
fects of overlap factor, multi-tooth cutting, and structural
damping.

Setting up the Problem

The Equation of Motion. A single-degree-of-freedom
machine-tool system under orthogonal cutting conditions, with the
displacement coordinate q, can be represented as

mq̈~ t !1cq̇~ t !1kq~ t !52uT cos crwh~ t !, (1)
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where uT is the specific thrust energy, cr is the lead angle, w is the
width of cut and h(t) is the dynamic uncut chip thickness. If it is
assumed, with no loss of generality, that the coordinate q lies in
the tool feed direction, the uncut chip thickness is

h~ t !5@q~ t !2mq~ t2T t!1 f t#cos cr ,

where f t is the feed per tooth in the q direction and T t is the tooth
period and, likewise, the regenerative delay. The parameter m is
the overlap factor that accounts for the level of regeneration. It is
usually assumed that 0<m<1, though it has been shown to take
on other values @19#.
Accumulating all specific energy and directional terms into a

single process gain, specifically

Kp52uT cos
2 cr ,

Equation ~1! reduces to

mq̈1cq̇1kq5Kpw@q~ t !2mq~ t2T t!1 f t# , (2)

where the explicit dependence on time in the left-hand side is
dropped for convenience. When periodic time variation exists in
the process force as it often does, it is incorporated into the pro-
cess gain so that Kp becomes Kp(t). It is convenient here to
define the process gain in terms of its time-invariant part Kpti and
its time varying part Kptv(t) as

Kp~ t !5Kpti•Kptv~ t !52uT cos
2 cr•Kptv~ t !. (3)

The intermittency of machining is introduced within Kp(t) as a
switching function, g(t) @5,20#. It is equal to unity while cutting
and zero otherwise, and its period is the tooth period. In milling,
the sources of time variation include both the switching function
and the process ~tooth-sweep! kinematics. For intermittent or-
thogonal tube-end turning/boring considered here, the kinematics
are simple by design so that the only source of time variation is
g(t). Hence, for simplicity Kptv(t) is replaced by g(t).
Others, having considered milling processes, have used ‘‘im-

mersion’’ to quantify the extent of tooth engagement. Here, duty
cycle is used instead; it is loosely described as the percentage of
the machining ~spindle! period spent cutting. It can be defined
from the perspective of either a single tooth or the spindle. The
tooth duty cycle, Dt , is defined as the percentage of the spindle
period for which an individual tooth is engaged in the cut. Like
the traditional definition of a duty cycle, the tooth duty cycle can
range from zero to unity. The spindle duty cycle, Ds , equals Dt

for the case of single-tooth machining. More generally, assuming
evenly spaced teeth, Ds5N tDt , where N t is the number of teeth.
Clearly, the spindle duty cycle can assume values greater than
unity, which provides for generalization to the multi-tooth case
where there need not exist periods of free vibration.
Introducing Eq. ~3! into Eq. ~2!, dividing through by the mass,

regrouping terms, and dropping the feed term ( f t) that does not
affect stability, the equation of motion to be studied results as

q̈12zvnq̇1vn
2q5

Kptiw

k
vn
2g~ t !@q~ t !2mq~ t2T t!# , (4)

where vn and z are the structural natural frequency and damping
ratio, respectively. Single-tooth machining is assumed for the deri-
vations here; extension to multi-tooth machining would be a fairly
straightforward exercise though the results are less compact. Fur-
thermore, the process force is treated as linear by linearizing the
size-effect nonlinearity introduced by the specific energy as a first
step in analyzing the added-lobe problem.

General Problem Characteristics. Exploratory numerical
time-domain simulations were conducted to study the effects of

process and structural parameters on the effects of intermittency
and ultimately on the ultrahigh-speed added lobe that was identi-
fied. The machine-tool system is routinely implemented in a simu-
lation package, such as Matlab. In addition to determining stabil-
ity ~growth or decay of the response to a disturbance!, it was also
desired to study the steady-state chatter frequency, which requires
that a sufficient number of previous tooth passes ~long-term pro-
cess memory! be included @21#.
A power-spectrum study indicates that chatter in the ultrahigh-

speed added lobe occurs primarily at one-half the tooth frequency.
Therefore, later references to the chatter frequency in the added
lobes imply one-half the tooth frequency. As expected, the tooth
frequency and its harmonics dominate during stable machining.
The one-half tooth frequency and the tooth frequency are both
present along the ultrahigh-speed added lobe boundary.
The effects of structural stiffness, mass, natural frequency and

specific energy are consistent with those that have been observed
in traditional stability analyses for intermittent and continuous
machining. As such, the limiting width of cut w lim may be pre-
sented as a non-dimensional stability limit Kptiw lim /k , the leading
term on the right-hand side of Eq. ~4!. Given that and the fact that
the speed axis can be presented as the normalized tooth frequency
V t5v t /vn , there is no need to specify values for many of the
system parameters, such as specific energy ~i.e., Kpti), natural
frequency, and structural stiffness k. The only parameters that
must be quantified are damping ratio, z, and overlap factor, m,
which are set to 0.05 and 1, respectively, unless noted otherwise;
their effects will be studied in Part 2.

The Chatter Frequency and the Regenerative Delay Term.
The results of the numerical simulations clearly demonstrate that
the added-lobe chatter frequency is one-half the tooth frequency,
v t . The Appendix further confirms this by providing an
analytical/mathematical argument that is familiar to the dynamics
community. The presented argument is the foundation of others’
observations @15,16# that the flip bifurcation leading to the added-
lobe instability corresponds to a real eigenvalue passing through
21 to the outside of the unit circle. This is in contrast to the Hopf
bifurcation instability that leads to the traditional stability lobes.
The response on the added-lobe boundary includes only integer

multiples ~harmonics! of one-half the tooth frequency. As a result,
all harmonics of the current tooth pass displacement q(t) and the
previous-pass displacement q(t2T t) are either in phase ~even
harmonics! or 180° out of phase ~odd harmonics!. Therefore, the
q(t) and q(t2T t) terms may be combined by replacing mq(t
2T t) in Eq. ~4! with 6mq(t) ~1 for even harmonics, 2 for odd
harmonics! to obtain

q̈12zvnq̇1vn
2q5

Kptiw

k
vn
2g~ t !@~16m !q~ t !# . (5)

The analysis for arbitrary overlap factor is possible, but quickly
becomes very complicated. To simplify matters in the derivation
here, only the simpler case of unity overlap is considered. This
simplification does not introduce a limitation as will be shown in
Part 2 of this work.
Setting the overlap factor to unity, q(t) and mq(t2T t) cancel

for all their components at the tooth frequency and its harmonics,
i.e., for even harmonics of v t/2, ~16m!→~121!50 in Eq. ~5!. On
the other hand, q(t) and mq(t2T t) add for all their components
at one-half the tooth frequency and its odd harmonics, i.e., ~1
6m!→~111!52 in Eq. ~5!. As a result, Eq. ~5! becomes

q̈12zvnq̇1vn
2q5

Kptiw

k
vn
2g~ t !@2q~ t !# ,

or

q̈12zvnq̇1vn
2S 122

Kptiw

k
g~ t ! D q50, (6)
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where q(t) includes only odd harmonics of one-half the tooth
frequency.

The Periodically Time Varying Process Gain. The periodic
time variation is addressed by approximating the process gain,
specifically Kptv(t), with its Fourier series expansion. In this case,
since Kptv(t) is simply g(t), the problem is simplified; however,
the methods presented here apply to any form of Kptv(t) that is
T t-periodic. Since the derivation is constrained to a single tooth,
the spindle and tooth duty cycles are identical and are simply
referred to as the duty cycle D.
Without loss of generality, if g(t) is considered to be time-

referenced so that its square pulse is centered at the origin, g(t) is
an even function. This simplifies its Fourier series expansion to
include only cosine terms. Expanding g(t) and substituting into
Eq. ~6! results in

q̈12zvnq̇1vn
2S 122D

Kptiw

k

2

4

p

Kptiw

k (
l51

`
~21 ! l11

l
sin~ lpD!cos~2lv1t !D q50,

(7)

which is in the form of Hill’s equation with period p/v1 or,
equivalently, 2p/v t . Equation ~7! may be rewritten as

q̈12zvnq̇1S d12«(
l51

`

b I cos~2lv1t !D q50, (8)

where

b l5

~21 ! l11

l
sin~ lDp !, «5vn

2S 2
p

Kptiw

k
D

and

d5vn
2S 122D

Kptiw

k
D5vn

2
2pD« .

To summarize thus far, the Hill’s equation form has been
achieved by ~1! linearizing the process force, ~2! mathematically
confirming the existence of one-half the tooth frequency on the
stability boundary ~Appendix!, ~3! setting, without limitation,
overlap factor to unity, and ~4! approximating the periodicity with
a Fourier series expansion.

The Assumed Response. As noted earlier, the assumed form
of the response that need be considered for m51 includes only
terms at odd multiples of one-half the tooth frequency. Therefore,
the assumed response is written as

q~ t !5(
i51

`

@a2i21 sin~~2i21 !v1t !1b2i21 cos~~2i21 !v1t !# ,

(9)

where v15v t/2. Substituting Eq. ~9! into Eq. ~8! results in

2v1
2(

i51

`

~2i21 !2@a2i21 sin~~2i21 !v1t !1b2i21 cos~~2i

21 !v1t !#12zvnv1(
i51

`

~2i21 !@a2i21 cos~~2i21 !v1t !

2b2i21 sin~~2i21 !v1t !#1S d12«(
l51

`

b l cos~2lv1t !D
3(

i51

`

@a2i21 sin~~2i21 !v1t !1b1i21 cos~~2i21 !v1t !#

50.

This expands to

2v1
2@a1 sinv1t1b1 cosv1t#2~3v1!

2@a3 sin 3v1t

1b3 cos 3v1t#2~5v1!
2@a5 sin 5v1t1b5 cos 5v1t#2 . . .

12zvnv1@a1 cosv1t2b1 sinv1t#13~2zvnv1!@a3 cos 3v1t

2b3 sin 3v1t#15~2zvnv1!@a5 cos 5v1t2b5 sin 5v1t#1 . . .

1d@a1 sinv1t1b1 cosv1t#1d@a3 sin 3v1t1b3 cos 3v1t#

1d@a5 sin 5v1t1b5 cos 5v1t#1 . . .

12«b1 cos~2v1t !@a1 sinv1t1b1 cosv1t1a3 sin 3v1t

1b3 cos 3v1t1a5 sin 5v1t1b5 cos 5v1t1 . . . #
(10)

12«b2 cos~4v1t !@a1 sinv1t1b1 cosv1t1a3 sin 3v1t

1b3 cos 3v1t1a5 sin 5v1t1b5 cos 5v1t#1 . . .

12«b3 cos~6v1t !@a1 sinv1t1b1 cosv1t1a3 sin 3v1t

1b3 cos 3v1t1a5 sin 5v1t1b5 cos 5v1t#1 . . .

]

50.

For the third-from-last block of terms in Eq. ~10!, multiplying
the cos(2v1t) term through the bracketed summation of harmon-
ics, and employing trigonometric identities, leads to

«b1@a1~sin 3v1t2sinv1t !1b1~cos 3v1t1cosv1t !

1a3~sin 5v1t1sinv1t !1b3~cos 5v1t1cosv1t !

1a5~sin 7v1t1sin 3v1t !1b5~cos 7v1t1cos 3v1t !

1a7~sin 9v1t1sin 5v1t !1b7~cos 9v1t1cos 5v1t !

1 . . . # .

The same can be done for the final two blocks of terms in Eq.
~10!, i.e., multiplying through cos(4v1t) and cos(6v1t), so that the
coefficients of sin(nv1t) and cos(nv1t), n odd, can be grouped. A
pattern becomes evident that allows Eq. ~10! to be expressed in
matrix form as

$H%T@A#$C%50, (11)

where
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$H%5$sinv1t cosv1t sin 3v1t cos 3v1t sin 5v1t cos 5v1t ¯%T,

$C%5$a1 b1 a3 b3 a5 b5 ¯%T,

and

@A#53
d2v1

2
2«b1 22zvnv1 «~b12b2! 0 «~b22b3! 0 ¯

2zvnv1 d2v1
2
1«b1 0 «~b11b2! 0 «~b21b3! 0

«~b12b2! 0 d2~3v1!
2
2«b3 23~2zvnv1! «~b12b4! 0 «~b22b5!

0 «~b11b2! 3~2zvnv1! d2~3v1!
2
1«b3 ¯ ¯ 0 «~b11b4! 0

«~b22b3! 0 «~b12b4! 0 d2~5v1!
2
2«b5 25~2zvnv1! «~b12b6!

0 «~b21b3! 0 «~b11b4! 5~2zvnv1! d2~5v1!
2
1«b5 0

] 0 «~b22b5! 0 «~b12b6! 0 �

4.
(12)

Now, since $H% cannot be zero for all time, and $C%5$0%
would be a trivial solution, the solution to Eq. ~11! requires that
the determinant of @A# be zero. Since an exact solution to an
infinite determinant is not possible, the determinant is truncated to
2O32O where O is the order of the solution. This results in O
added stability lobes being identified along the speed axis, not just
the single ultrahigh-speed added lobe that was studied in the pre-
vious works @18,22#.
If arbitrary overlap factor were considered, the 2Kpti term

starting in Eq. ~6! would be simply replaced by (1

1(21)n11m)Kpti , while the complication would come from ap-
pending to the above equations an , bn , sin(nv1t), and cos(nv1t),
n even. Ultimately, the ‘‘even’’ and ‘‘odd’’ terms can be decoupled
in @A# with the odd terms being of interest; this allows the simpli-
fied m51 presentation thus far to bypass the need for the added
mathematical notation.

The Un-Damped Solution

The un-damped case is an extreme scenario that typically will
not exist in practice. However, the zero-damping solution does
provide an asymptotic view of the added stability boundaries.
Studying the boundary asymptotes is enlightening in that it solidi-
fies a pattern to the multiple added lobes in terms of their posi-

tioning along the speed axis, just as there is a mathematical logic
to the positioning of the traditional stability lobes along that axis.
For the case of zero damping the sin(nv1t) and cos(nv1t) terms

in Eq. ~11! decouple, which results in two determinants, each
being of dimension equal to the order of the problem, O, rather
than 2O , which greatly simplifies matters. When this is done, Eq.
~11! can be rewritten as

$Hs%
T@As#$Cs%1$Hc%

T@Ac#$Cc%50,

where

$Hs%5H sinv1t

sin 3v1t

sin 5v1t

]

J , $Hc%5H cosv1t

cos 3v1t

cos 5v1t

]

J ,

$Cs%5H a1

a3

a5

]

J , $Cc%5H b1

b3

b5

]

J ,

@As#5F d2v1
2
2«b1 «~b12b2! «~b22b3! «~b32b4! ¯

«~b12b2! d2~3v1!
2
2«b3 «~b12b4! «~b12b5!

«~b22b3! «~b12b4! d2~5v1!
2
2«b5 «~b12b6!

«~b32b4! «~b12b5! «~b12b6! d2~7v1!
2
2«b7

] �

G ,
and

@Ac#5F d2v1
2
1«b1 «~b11b2! «~b21b3! «~b31b4! ¯

«~b11b2! d2~3v1!
2
1«b3 «~b11b4! «~b11b5!

«~b21b3! «~b11b4! d2~5v1!
2
1«b5 «~b11b6!

«~b31b4! «~b11b5! «~b11b6! d2~7v1!
2
1«b7

] �

G .
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Like in the damped case, the solution where $Cs% and $Cc% are
zero is a trivial one, and since $Hs% and $Hc% are harmonic func-
tions of time, the only nontrivial solution that holds for all time
corresponds to the determinants of @As# and @Ac# being zero.

An Added-Lobe Numbering Convention. Locating the
added lobes along the speed axis involves determining the speeds
that correspond to a zero width of cut. Setting the width of cut to

zero makes « equal to zero and d equal to vn
2. Substituting these

into @As# and @Ac# shows that the two become equal, resulting in
a single equation

Uvn
2
2v1

2 0 0 ¯

0 vn
2
2~3v1!

2 0

0 0 �

] vn
2
2~~2i21 !v1!

2

U50.

(13)

The determinant in this case is simply the product of the entries on
the diagonal, which is equal to zero if any one of the diagonal
terms is zero, i.e., if

S v t

vn
D 25S 2

2i21
D 2⇒ v t

vn

5

2

2i21
,

i51,2,3→2i2151,3,5, . . . . (14)

Equation ~14! introduces a lobe numbering scheme where the
ultrahigh-speed added lobe is numbered ‘‘1/2’’—the value of
vn /v t ~not v t /vn) to which the two un-damped added-lobe
boundaries converge to one another at w50. Following this con-
vention, the lower-speed added lobes that are subsequently illumi-
nated with each increase in order O are numbered 3/2, 5/2 and so
on. Recall that the traditional lobes are numbered 0, 1, 2, . . . as
speed decreases, where this number is the integer portion of the
ratio vn /vc , vc being the chatter frequency. As such, the two
numbering schemes are analogous.

Zero-Damping Added-Lobe Solutions. As noted above, ob-
taining a solution requires truncation to the order O. Furthermore,
since this case of zero damping permits the single 2O32O de-
terminant to be split into two O3O determinants, it is possible to
derive symbolically the solution for the first two added lobes ~1/2
and 3/2; i.e., O52).
Noting that @As# and @Ac# are of the same form, differing only

by a flip in sign on many of the terms, they may be written as

Fd2v1
2
7«b1 «~b17b2!

«~b17b2! d2~3v1!
2
7«b3

G ,
where using the top of the 7 signs gives the result for @As# .
Substituting the expressions for d and « and dividing through by

vn
2, the problem becomes

U 12V t
2
2

2

p

Kptiw

k
~pD6b1!

2

p

Kptiw

k
~b17b2!

2

p

Kptiw

k
~b17b2! 12~3V t!

2
2

2

p

Kptiw

k
~pD6b3!

U50,

where V t5v t /vn is the normalized tooth frequency.
Writing out the determinant produces a quadratic in w, which

yields two solutions, w1 and w3 , for each case ~of the 6 and 7

signs!. In other words, there exist two pairs of solutions, w1a ,b
and

w3a ,b
, where one pair corresponds to the ‘‘1’’ on the square-root

term in the quadratic formula, and the other pair corresponds to
the ‘‘2’’ on that term. In other words, the subscripts ‘‘1’’ and ‘‘3’’

refer to lobes 1/2 and 3/2, and the subscripts ‘‘a’’ and ‘‘b’’ refer to
the two boundaries ~left and right! that together form the lobe. The
result is

w1a ,b,3a ,b
5

ra ,b6Ara ,b
2

24ka ,b~12V t
2!2

4ka ,b

p

Kpti

k

, (15)

where

ra ,b5~V t
2
21 !@2pD6~b11b3!

2#

and

ka ,b5~pD6b1!~pD6b3!2~b17b2!
2.

The 1/2 and 3/2 lobes for D51/2 are graphed in Fig. 1, displayed
as the nondimensional stability limit Kptiw lim /k .

2

The Damped Solution

When damping is not zero, the original matrix @A# of Eq. ~12!
must be evaluated. The first consequence of non-zero damping is

that when w is set equal to zero ~i.e., «50 and d5vn
2),

2Numerical simulation shows the ultra-high speed added lobe to become more

pronounced for lower duty cycles, and gradually less pronounced for duty cycles

higher than one-half. In other words, the one-half duty cycle used to visualize the

analytical results ~in the figures! is a middle-of-the-road representative value, not one
that accentuates the added lobe.

Fig. 1 Undamped second-order stability solutions showing
the 1Õ2 and 3Õ2 lobes for a one-half duty cycle
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@A#53
vn
2
2v1

2
22zvnv1 0 0 ¯ ¯

2zvnv1 vn
2
2v1

2 0 0 ¯ ¯

0 0 vn
2
2~3v1!

2
23~2zvnv1! 0 0

0 0 3~2zvnv1! vn
2
2~3v1!

2 0 0

] ] 0 0 � �

] ] 0 0 � �

4 .
This matrix is no longer diagonal as it was in Eq. ~13! for the un-damped case. However, being block-wise diagonal, the solutions for
v t /vn occur in pairs that result from setting each 232 sub-determinant equal to zero. It can be shown that these solutions for v t /vn

are complex conjugate pairs for all non-zero damping ratios less than unity; damping ratios of unity and above are not seen in practice
and, hence, are not of interest here. Since only real-valued solutions for tooth frequency are physically sensible, this means that the
stability limit can never actually be zero on these added lobes when there exists positive ~and less than critical! damping. This makes
sense.
For the first-order case, truncating Eq. ~12! to a 232 matrix and equating its determinant to zero yields

Ud2v1
2
2«b1 22zvnv1

2zvnv11
d2v1

2
1«b1

U50.

Substituting the expressions for d and «, replacing v1 with v t/2, dividing through by vn
2 and multiplying by 4 yields

U 42V t
2
28~pD1b1!

1

p

Kptiw

k
24zV t

4zV t 42V t
2
28~pD2b1!

1

p

Kptiw

k

U50. (16)

Solving the resulting quadratic in w, a pair of solutions results as

w lim5

pD~V t
2
24 !6Ab1

2@V t
4
28V t

2
116~11V t

2z2!#2~4pDV tz !2

8

p

Kpti

k
~b1

2
2p2

D
2!

. (17)

The second consequence of non-zero damping is that even the
second-order solution requires evaluating a 434 determinant.
While this is no problem with a numerical approach, it is not
suited to a clear symbolic derivation to a final closed form.
The computational results for the one-half lobe are shown in

Fig. 2, which demonstrate very good agreement between the
second-order solution and the solution found through numerical
time-domain simulations. The figure also confirms that the
intuition-based first-order approach of Corpus @18# and the first-
order solution found above are identical, as may be expected. This
figure validates the objective of this effort—to provide the same
results as a numerical simulation through an analytical solution
that can be computed in only a small fraction of the time associ-

ated with the numerical simulation approach. Part 2 proceeds to
validate the physical existence of the added lobes as well as the
quantitative accuracy of the numerical and analytical results
through a physical experiment.
From the perspective of practical applications, in light of the

typical uncertainties in structural dynamic parameters and specific
energy, computing the second- or third-order solution and the
added accuracy it provides may not yield any significant advan-
tage over the first-order solution. However, the second-order so-
lution is needed to predict the 3/2 lobe, which is likely to have
practical significance since it falls within the same speed regime
as does the traditional high-speed ~0-1! peak—the usual target for
increased productivity in high-speed machining. From the per-
spective of being able to predict more added lobes, a third-order
solution and the 5/2 lobe that it would predict is probably not
warranted since the traditional 1–2 peak that it may affect is usu-
ally too narrow to operate within anyway.

Conclusions

The locations of the added lobes along the speed axis are shown
to occur in a mathematically definable pattern that is highlighted
by the zero-damping solution. The first-order damped solution ac-
curately predicts, relative to the more time consuming numerical
simulation, the lower/right-hand stability boundary and exhibits
roughly 10% error at the upper/left-hand boundary. This is reason-
ably accurate considering the simplicity of the closed-form solu-
tion that is possible. The second-order solution is highly accurate
at both boundaries when compared to the numerical simulation
results.

Fig. 2 Comparison of solution approaches for the 1Õ2 lobe for
a one-half duty cycle
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Appendix

Since all other aspects of the problem are linear ~or linearized!
and the chatter nonlinearity is not present for sufficiently small
disturbances from equilibrium, such as at the stability boundary,
superposition may be employed to obtain a solution for the re-
sponse to such a disturbance. As such, Eq. ~4! ~with f t term! can
be broken into the following equations:

q̈12zvnq̇1vn
2q5

Kptiw

k
vn
2g~ t !• f t , (18)

q̈12zvnq̇1vn
2q5

Kptiw

k
vn
2g~ t !•q~ t !, (19)

and

q̈12zvnq̇1vn
2q52

Kptiw

k
vn
2g~ t !•mq~ t2T t!. (20)

Since g(t) is periodic, the solution to Eq. ~18! is that of a forced
vibration at the tooth frequency and its harmonics; therefore, it
does not affect the stability problem, which agrees with the nu-
merical simulation findings of Corpus @18#. Equation ~20! is iden-
tical to Eq. ~19!, except that it is shifted in time by the tooth
period and multiplied by negative m. The periodic solution to Eq.
~20! will therefore exhibit the same period as the solution to Eq.
~19!. If this common period is assumed to be an integer multiple
of the time delay in Eq. ~20! ~the tooth period T t), then Eq. ~20!
and Eq. ~19! may be combined ~added! in an expansion, resulting
in the following homogeneous equation:

q̈~ t !12zvnq̇~ t !1vn
2F12~12m !

Kptiw

k
g~ t !Gq~ t !50. (21)

It will be confirmed below that the above assumption is valid.
Following Nayfeh and Mook @23#, since Eq. ~21! is linear, it

can be written as a linear combination of two linearily indepen-
dent solutions such that

q~ t !5c1q1~ t !1c2q2~ t !, (22)

where c1 and c2 are constants and q1(t) and q2(t) is termed the
fundamental set of solutions. The fundamental set of solutions for
a system of this type is of the form

q i~ t !5f i~ t !e
r it, (23)

where the coefficient f i(t) introduces the periodic time variation,
and r i , the characteristic exponent, is taken from ~is a root of! the
characteristic equation.
The bracketed coefficient of q(t) in Eq. ~21! varies in time with

period T t . Therefore, Eq. ~21! may be rewritten after one tooth
period3

q̈~ t1T t!12zvnq̇~ t1T t!1vn
2F12~12m !

Kptiw

k
g~ t !Gq~ t1T t!

50. (24)

The bracketed term is unchanged since the equation has been
shifted in time by its period ~that of g(t)). The solution to Eq.
~24! is identical in form to Eq. ~22!, namely

q~ t1T t!5c1q1~ t1T t!1c2q2~ t1T t!.

Furthermore, since Eq. ~24! is identical to Eq. ~21! having been
shifted by T t , the two equations differ only in their initial condi-
tions. Because Eqs. ~21! and ~24! are the same equation, if q1(t)
and q2(t) is a fundamental set of solutions to Eq. ~21!, then
q1(t1T t) and q2(t1T t) is as well.
From Eq. ~22!, it is determined that q1(t1T t) and q2(t1T t)

can be written as a linear combination of q1(t) and q2(t) as

q i~ t1T t!5g i1q1~ t !1g i2q2~ t !, i51,2,

or in matrix format as

$q~ t1T t!%5@G#$q~ t !%, (25)

where $q(t)%5$q1(t) q2(t)%
T and @G# is a constant non-singular

matrix. There then exists another fundamental set of solutions to
Eq. ~21!, v1(t) and v2(t), such that

$q~ t !%5@P#$v~ t !%, (26)

where $v(t)%5$v1(t) v2(t)%
T and @P# is a constant non-singular

matrix. Substituting Eq. ~26! into Eq. ~25! and rearranging yields

$v~ t1T t!%5@L#$v~ t !%, (27)

where @L#5@P#21@G#@P# .
The matrix @L# is similar to @G# and, hence, has the same ei-

genvalues. To simplify the form of @L#, the columns of @P# are
chosen as the normalized eigenvectors of @G# such that

u@G#2l@I#u50, (28)

where l is an eigenvalue of @G# and @I# is the identity matrix.
Assuming distinct roots of the characteristic equation that is rep-
resented by Eq. ~28!, the form of @L# is

@L#5Fl1 0

0 l2
G .

Equation ~27! may then be expanded and rewritten as

v i~ t1T t!5l iv i~ t !, i51,2.

Furthermore,

v i~ t12T t!5l iv i~ t1T t!5l i
2
v i~ t !,

v i~ t13T t!5l iv i~ t12T t!5l i
2
v i~ t1T t!5l i

3
v i~ t !,

(29)

]

v i~ t1nT t!5l i
n
v i~ t !,

where n is any non-negative integer, n50 being a trivial result.
The stability state is determined by assessing the ratio of the

response at n tooth periods in the future relative to that at the time
(to) of the disturbance v i(to), i.e., from Eq. ~29!,

v i~ to1nT t!

v i~ to!
5l i

n . (30)

The growth or decay of the right-hand side with increasing n is
governed by the absolute value of l i ; specifically, as t→` ~i.e.,
as n→`), v i(t)→0 if ul iu,1 and v i(t)→` if ul iu.1. The sta-
bility boundary corresponds to marginal stability where ul iu51.
Of interest is the frequency content of the constant-amplitude re-
sponse when operating on the stability boundary.
When ul iu51, l i may be either 11 or 21. When l i511, Eq.

~30! holds for all time and any n only if the response period is T t .

When l i521, the sign of l i
n alternates as n is incremented.

Therefore, when l i521, the response period must be 2T t .
Therefore, the only constant-amplitude sustained responses ~i.e.,
those on the added-lobe boundary! that may occur are those with
periods of either T t or 2T t . Since g(t) contains harmonics of v t ,
when run through this analysis, each would show a constant-
amplitude response containing that harmonic ~multiple! of v t as

3This forward shift in time by T t should not be confused with the time delay of T t

associated with regeneration since the two are unrelated.
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well as one-half of that. In other words, frequencies of kv t and
kv t/2, k.0, the latter encompassing the former, may be present
on the added-lobe boundary.
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