Unsupervised Structure Damage Classification Based on the Data Clustering and Artificial Immune Pattern Recognition

Bo Chen¹ and Chuanzhi Zang²

¹ Department of Mechanical Engineering – Engineering Mechanics/Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI, USA bochen@mtu.edu
² Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI, USA Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, China czang@mtu.edu

Abstract. This paper presents an unsupervised structure damage classification algorithm based on the data clustering technique and the artificial immune pattern recognition. The presented method uses time series measurement of a structure's dynamic response to extract damage-sensitive features for the structure damage classification. The Data Clustering (DC) technique is employed to cluster training data to a specified number of clusters and generate the initial memory cell set. The Artificial Immune Pattern Recognition (AIPR) algorithms are integrated with the data clustering algorithms to provide a mechanism for the evolution of memory cells. The combined DC-AIPR method has been tested using a benchmark structure. The test results show the feasibility of using the DC-AIPR method for the unsupervised structure damage classification.

Keywords: structural health monitoring, unsupervised structure damage classification, data clustering, artificial immune pattern recognition.

1 Introduction

Damage diagnosis is one of the major tasks of the structural health monitoring (SHM) systems. The SHM process involves the observation of a structure's dynamic response measurements from a group of sensors, the extraction of damage-sensitive features from these measurements, and analysis of these features to determine the current state of the structure [1]. Traditional SHM systems are wired data acquisition systems to collect distributed sensor data to a central data processing station. The practical use of wired SHM systems is limited due to high instrument and installation costs [2]. The wireless sensor network approach is emerging for the effective SHM since it allows dense sensing through many in-expensive sensor nodes and is easy for deployment and maintenance. While sensor network approach presents a number of advantages, SHM sensor network systems currently face many challenges. Major challenges in SHM are: 1) How can we provide sustainable long-term monitoring and

P.S. Andrews et al. (Eds.): ICARIS 2009, LNCS 5666, pp. 206–219, 2009. © Springer-Verlag Berlin Heidelberg 2009