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Variation Propagation Analysis on
Compliant Assemblies
Considering Contact Interaction
Dimensional variation is inherent to any manufacturing process. In order to minimize its
impact on assembly products it is important to understand how the variation propagates
through the assembly process. Unfortunately, manufacturing processes are complex and
in many cases highly nonlinear. Traditionally, assembly process modeling has been ap-
proached as a linear process. However, many assemblies undergo highly complex non-
linear physical processes, such as compliant deformation, contact interaction, and weld-
ing thermal deformation. This paper presents a new variation propagation methodology
considering the compliant contact effect, which will be analyzed through nonlinear fric-
tional contact analysis. Its variation prediction will be accurately and efficiently con-
ducted using an enhanced dimension reduction method. A case study is presented to show
the applicability of the proposed methodology. fDOI: 10.1115/1.2752829g

1 Introduction

Dimensional variation is inherent to any manufacturing process.

Therefore, it is important to understand how it propagates through

a manufacturing process. Fast and accurate evaluation models of

process variation are critical in determining the final dimensional

variation of a product and in selecting robust product/process de-

sign. Unfortunately, manufacturing processes are complex and in

many cases highly nonlinear. In general, the lack of efficient non-

linear modeling tools has limited the analysis of processes to sim-

plified linear models.

One commonly used nonlinear manufacturing process is the

assembly of compliant components. Compliant assembly is de-

fined as the process of joining flexible or nonrigid parts. Many

products, including automobiles, aircraft, furniture, and home ap-

pliances, are constructed primarily from compliant parts. In many

of these products, the number of parts can be very large, such as

the several hundred compliant parts that form a typical auto body

assembly. Since parts and fixtures inherently have geometrical

variation, understanding how these variations propagate through

the system is of significant interest to the design and control of

such systems. Two approaches have been widely adopted to

model assembly processes: rigid body analysis f1,2g and compli-
ant analysis f3–6g. However, all these methodologies are based on
linearized models. In contrast, Cai et al. f7g introduced the non-
linear contact effect on the assembly of compliant parts. They
used a second-order Taylor expansion sTSEd method to estimate
the nonlinear effects. However, TSE methods are inefficient and
inaccurate unless the assembly process response is close to being
linear.
Variation propagation analysis is defined as a mechanism by

which input uncertainty is propagated to output uncertainty
through a system sor processd. The system may consist of sub-
systems or subprocesses. Input uncertainty includes any type of
parameters or variables that are uncertain, as shown in Table 1.
Although uncertainty propagation has been extensively investi-
gated in many engineering fields, uncertainty propagation is still
regarded as a state-of the-art task, mainly due to its expensiveness
and inaccuracy for complex systems.
Accordingly, many different methods have been developed for

uncertainty propagation analysis. These methods can be catego-

rized into three approaches: sampling techniques, expansion tech-

niques, and advanced first-order second moment sAFOSMd.
The most common sampling techniques are Monte Carlo simu-

lation sMCSd and design of experiments sDOEd. In general, these
methods are quite comprehensive and easy to use but may be too

expensive to achieve good accuracy. Simulation methods f3g can
be expensive for predicting high reliability, whereas DOE f8g can
be costly for high dimensional problems, a so-called curse of di-

mensionality. Therefore, sampling techniques are often used for

verification or benchmarking studies.

There exist three types of expansion methods: Taylor series

expansion, perturbation, and Neumann expansion. The Taylor se-

ries expansion method yields inaccurate estimates for a nonlinear

system. Hence, its application has been restricted to linear or

mildly nonlinear systems. In addition to such difficulty, it requires

a second-order sensitivity analysis for uncertainty control, which

is expensive and complicated f9g. In the perturbation method, the
solution is approximately represented in a perturbed form. Thus, it

can be applied to diverse systems represented by differential, in-

tegral, and algebraic equations. Its primary disadvantages are the

lack of applicability to experiments and computational expensive-

ness when the dimension of the system is large f10g. Similarly, the
main limitation of the Neumann expansion method is the require-

ment that the perturbation terms must be small. Further, this

method is in general difficult to apply in conjunction with model-

ing complex nonlinear systems, as the model equations are often

mathematically intractable f11g. It is quite interesting that the

common drawback of expansion methods is inaccuracy of uncer-

tainty characterization for nonlinear systems.

Depending on the order of system approximation, uncertainty

propagation can be analyzed using AFOSM, such as first-order

reliability method sFORMd and using second-order reliability

method sSORMd. These methods accurately predict a tail approxi-
mation of the probability distribution for a system but, respec-

tively, require first-order and second-order derivatives for system

performances with respect to input uncertainties f12g. Thus, the
application of AFOSM is limited to relatively simple engineering

problems.

Current assembly models for predicting geometrical variation

propagation are limited to linear analysis. However, real assembly

processes are more complex and heavily subject to uncertainties

of system parameters. In order to extend the capabilities of current

models, it is necessary to create new methods that predict geo-
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metrical variation propagation by taking into account the nonlin-
ear effects due to the contact between the components and tools in
the physical assembly process.
This paper presents a new methodology to predict the effect on

assembly dimensions due to variation on geometrical dimensions
on the assembly components. The methodology considers the as-
sembly interaction due to the physical contact between the com-
ponents and tools sclamps and welding gunsd. These interactions
produce additional deformations in the components during and
after the assembly process. In addition, due to the limitation of
traditional uncertainty propagation methods, a new methodology
for uncertainty propagation in nonlinear assembly systems is pre-
sented. The methodology is based on finite element calculations
and an enhanced dimension reduction method f13,14g.
The paper is organized as follows. Section 2 reviews the tradi-

tional rigid and compliant assembly methodologies. Section 3 pre-
sents the new methodology to predict assembly variation propa-
gation in nonlinear contact assemblies. The enhanced dimension
reduction seDRd method is presented in Sec. 4. The eDR method
allows predicting the output distribution for the assembly based
on given distribution of the input parameters. In Sec. 5, a case
study of a hood bracket assembly is discussed. The case study
shows the application of the new methodology. Finally, Sec. 6
draws conclusions.

2 Traditional Sheet Metal Assembly Modeling

Several models have been proposed to predict variation propa-
gation on assembly processes. Initial approaches have focused on
rigid part assembly using either the root sum squares sRSSd
method or MCS. A detailed review and discussion can be found in
Ref. f15g. Recently, multilevel variation propagation models have
also been developed. Mantripragada and Whitney f2g proposed a
state transition model to predict the variation propagation in mul-
tistage assembly systems. Ding et al. f1g presented a state space
model for dimensional control in sheet metal assembly assuming
rigid parts. For compliant assembly, Liu and Hu f3g proposed a
compliant assembly model to analyze the effect of deformation
and springback on assembly variation by applying linear mechan-
ics and statistics. Using finite element methods sFEMsd, they con-
structed a sensitivity matrix to establish a linear relationship be-
tween the incoming part deviation and the output assembly
deviation. Camelio et al. f4g extended this approach to multista-
tion systems using a state space representation.
Assembly variation is estimated as a function of the compo-

nents’ geometry, process layout, and the contribution of various
sources of variation. Three main sources of variation have been
identified in sheet metal assembly: component variation, fixture
variation, and joining method induced variation. The term part
variation is defined in a general sense, including the mean devia-

tion, m, and the variance of the deviation, s2, on parameters that
describe the geometry of the component. Deviation is defined as
the difference between the actual part dimension and the nominal

dimension. Part deviation can be denoted as a vector VPRn31, in
which the elements correspond to deviations at each parameter.

Traditional assembly modeling approaches define part deviation
as point based considering only key control characteristics.
Liu and Hu f3g presented the method of influence coefficients

sMICd to predict the impact of the part deviation, X, on the as-

sembly deviation, Y. Finite element methods and the MIC are

used to obtain the sensitivity matrix, S, for a sheet metal assembly.

The elements of the sensitivity matrix, sij, measure the sensitivity

of the assembly at node i to the incoming part deviation at node j.
This approach considers a linear relationship between the incom-
ing parts deviation and the final assembly deviation. Therefore,

the assembly deviation, Y, can be calculated using Eq. s1d. By
definition Y is the assembly deviation vector, where the column
elements represent the assembly deviation at the key measurement

points. X is the component deviation vector, where the elements
represent the component deviation at the welding nodes

Y = 3
ya1

ya2
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yam

4 =o
j=1

n 3
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smj

4 · x j = 3
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A A A A
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4 · 3
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4
s1d

or Y = S · X .

The station level model presented in Eq. s1d describes the as-
sembly variation behavior at a single station. However, sheet
metal assembly processes are typically multilevel hierarchical
manufacturing processes, where parts are joined together at differ-
ent sequential or parallel stations. Dimensional variation will
propagate from station to station based on incoming parts varia-
tion, fixture variation, and the joining process variation. The
propagation effect of the dimensional variation can be modeled as

a linear time discrete system, where the variable time, k, repre-

sents the station location sEq. s2dd; A is the state matrix; X is the

state vector; B is the input matrix; U is the input vector; W is a

perturbation vector; Y is the measurement/observation vector; C

is the observation matrix; and V is a measurement system noise
vector. Camelio et al. f4g developed a methodology to analyze the
propagation of variation in compliant multistation assembly sys-
tems using a state space representation

Xskd = Askd · Xsk − 1d + Bskd · Uskd + Vskd

Yskd = Cskd · Xskd + Vskd s2d

Although the MICs, presented by Liu and Hu f3g and widely used
on assembly variation simulation, can precisely and efficiently
predict the assembly distribution based on the linear mechanics, it
cannot be directly used for problems that behave in the nonlinear
domain. One of the limitations of the MIC is that the assembly
deformation is considered linear and no consideration to part in-
terference is included. Therefore, the parts are allowed to pen-
etrate each other when the come in contact during the assembly
process. In addition, the MIC approach constructs the sensitivity
matrix evaluation using the response of a nominal assembly under
external displacements for each individual component and the as-
sembly. An equivalent force for each source of variation is gener-
ated by exerting the corresponding deviation of the component
departing from a nominal position. The forces and displacements
are estimated using a finite element model. Then, the clamping
effect is simulated by applying the equivalent force in the opposite
direction to cause the component to recover it’s nominal position.
This approach differs significantly from the real assembly process,
limiting its capacity to represent the process under nonlinear con-
ditions. As it was mentioned earlier, nonlinear behavior on assem-
bly systems can be common under the contact interaction between
parts and due to welding distortion effects.
Based on these limitations, a new methodology to represent the

assembly process is needed. Considering the actual capabilities of

Table 1 Sources of uncertainty

Source Uncertainty type Examples

Product Shape Circularity
Size Length; thickness

Configuration Angles
Material Young’s modulus

Process Geometrical Fixtures position;
Welding gun location

Process parameters Pressure; sequence
Welding temperatures;
Current welding speed;
Welding direction
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commercially available finite element packages, a good method
will be a model that can represent the assembly process as close to
reality as possible. The proposed new approach is able to better
simulate the real assembly and allows system parameterization.
The system parameterization is a powerful tool to characterize the
response of the assembly for different sources of variation. Com-
bining the finite element analysis sFEAd tool with the eDR
method, the new methodology can efficiently and precisely handle
nonlinear contact problems.

3 Modeling Assembly Variation Including Contact

Considerations

Traditionally, an assembly process of sheet metal parts consid-
ers six steps: s1d the parts are located in the assembly station, a
3-2-1 locating fixture is used; s2d additional locators or clamps are
closed to nominal, deforming the sheet metal part if the part is
non-nominal; s3d the welding gunssd is closed to nominal, produc-
ing additional deformations; s4d the parts are joined together us-
ing, in general, resistance spot welding; s5d the welding gun and
clamps are released; and s6d the assembly springbacks. In order to
precisely represent the assembly process, a similar process is
simulated in finite elements using ABAQUS.
Considering the six steps in the assembly process, a new meth-

odology based on finite elements was developed to predict com-
ponents and tooling variation propagation in an assembly process.
The two objectives of the new methodology are: s1d to represent
the assembly process as close to reality as possible using finite
elements; and s2d to incorporate the effect of the physical contact
between the components and tools in the assembly. Two types of
contact are considered: the tool/part interactions and the part/part
interactions. The new methodology consists of the following four
steps that represent the assembly process of compliant sheet metal
parts:

1. The parts are located in the station. This is equivalent to
constructing the finite element model. The compliant sheet
metal parts are modeled as shell elements. The locators are
simulated as single point displacement constraints. In addi-
tion, to enhance the capability of the model to handle the
interaction between parts and tools, contact pair elements are
defined. The contact areas include both the contact between
components or parts and the contact between the tools and
the components. The parts are modeled including any devia-
tion from its nominal shape. In order to model uncertainty in
some dimensions, the model is parameterized. Therefore, the
components geometry and mesh can be modified by a small
set of parameters.

2. The clamps are closed, deforming the individual compo-
nents to their nominal position. Each clamp is modeled as a
rigid body. In general, the stiffness of the clamps is much
larger than the stiffness of the individual components. There-
fore, this is a reasonable assumption. At this step, the clamp
is moved towards the part, and the part is deformed due to
the contact between the clamp and the part.

3. The welding guns are closed and the parts are joined to-
gether. The welding process is simulated in three substeps.
First, the contact elements in each component corresponding
to the welding area are assigned as bonded. Bonding is a
property available for the contact pairs to determine the be-
havior of elements that come in contact. Second, an addi-
tional type of element is introduced. The welding nugget is
represented by connector elements. These elements con-
strain the nodes in different parts to share the same degree of
freedom sDOFd. Finally, an additional finite element tool,
microgap adjusting, is used to ensure that the welding area
between parts is completely in contact.

4. The parts are released. At this state, the welding gun tools
and additional locators and clamps are removed; then, the
assembly geometry changes due to the springback effect.

One of the main limitations of modeling contact elements is

convergence of the finite element model. The proposed methodol-

ogy has shown reliable results avoiding convergence issues. Sev-

eral measures were taken to improve the convergence of the con-

tact model. Some of the measures that improve the performance

of the simulation included in the methodology are: s1d a fine mesh
and fillets near the contact areas are used to avoid single node

penetration; s2d connector elements representing the weld nugget
are used to ensure sufficient constraint between welded parts; and

s3d microgap adjusting is used to overcome the microgap and

separation errors between the parts caused by the calculation er-

rors in the finite element.

The proposed simulation process differs from the MIC pre-

sented by Liu and Hu f3g because it simulates the assembly pro-
cess as a complete set of sequential operations without incorpo-

rating the use of equivalent forces or displacements to determine

the final springback. Figure 1 shows the steps of each methodol-

ogy. The main limitation of the new approach is that it requires a

complete simulation to evaluate the final springback of the assem-

bly for each set of input deviations. Due to the nonlinear response

of the contact behavior, an expensive Monte Carlo simulation is

required to completely describe the final distribution of the output

dimensions considering some variability in the input parameters.

To overcome this limitation, an efficient method to predict the

variation propagation in nonlinear contact assembly processes is

presented in Sec. 4

Fig. 1 Predictive contact assembly and method of influence
coefficients
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4 Enhanced Dimensional Reduction (DR) Method

4.1 Dimension-Reduction (DR) Method. In general, a prob-
ability density function sPDFd can be built using statistical mo-
ments se.g., mean and standard deviation for normal distribution,
and three parameters for Weibull distributiond. First, statistical
moments of a certain system response can be calculated as

EhYmsXdj =E
−`

+`

¯E
−`

+`

Ymsxd · fXsxd · dx s3d

Then, the corresponding PDF will be constructed based on statis-
tical moments. Multidimensional integration is a major challenge
in calculating statistical moments of system inputs. To resolve this
difficulty, the dimension reduction sDRd method uses additive de-
composition f13,16g, which converts a multidimensional integra-
tion in Eq. s3d into multiple one-dimensional integrations. The
additively decomposed function is defined as

YsX1, . . . ,XNd > o
j=1

N

Ysm1, . . . ,m j−1,X j,m j+1, . . . ,mNd

− sN − 1dYsm1, . . . ,mNd s4d

Using additive decomposition, the estimation of the statistical mo-
ments or uncertainty quantification of the system responses be-
comes much simpler. For the quality assessment of the assembly
product, the statistical moments for the responses are considered
in Eq. s5d as

EfYmsXdg > EhYa
mj =E

−`

`

Ya
m · fXsxd · dx

where

Ya =o
j=1

N

Ysm1, . . . ,m j−1,X j,m j+1, . . . ,mNd − sN − 1d · Ysm1, . . . ,mNd

s5d

Uncertainty of system responses can therefore be evaluated
through multiple one-dimensional numerical integrations. The re-
maining challenge of the problem is how to carry out one-
dimensional integration effectively. Using numerical integration,
the one-dimensional integrations will be performed with integra-

tion weights w j,i and points x j,i using Eq. s6d

EFo
j=1

N

Ymsm1, . . . ,m j−1,X j,m j+1, . . . ,mNdG
> o

j=1

N

o
i=1

k−1

w j,iY
msm1, . . . ,m j−1,x j,i,m j+1, . . . ,mNd s6d

The number of integration points determines computational effi-
ciency of the DR method. In general, the univariate DR method

uses kN+1 integration points, where N is the number of input

random parameters and k is the number of integration points along

each axis excluding the sample at the mean. It is suggested that k
must be maintained at 2, or at most, 4, for large-scale engineering
problems.
Using the DR method, three difficulties sinaccuracy, ineffi-

ciency, and singularityd are found while considering nonlinear ap-
plications. For highly nonlinear problems, the use of 2N+1 or

4N+1 integration points is not sufficient enough to capture the
true nature of the problem. Inaccuracy can be resolved via in-
creasing the number of integration points. However, this increases
computational cost substantially. The DR method suggests the use
of a moment based quadrature rule for the numerical integration.
It requires only statistical information of the random input param-
eters and generates the integration points and weights for numeri-
cal integration. Unfortunately, the large amount of integration

points to characterize a nonlinear problem requires high-order sta-
tistical moments of the input parameters to be known. It has been
shown in Ref. f13g that the use of high-order statistical moments
creates a singularity problem in determining the weights and in-
tegration points.

4.2 Enhanced Dimension Reduction (EDR) Method. The
DR method is enhanced by incorporating a more robust one-
dimensional numerical integration scheme. It is referred to as the
eDR method f14g. Compared to the DR method, the eDR method
increases the efficiency by using a stepwise moving least squares
sSMLSd method. It generates approximate response values,

Ŷsm1 , . . . ,m j−1 ,x j,i ,m j+1 , . . . ,mNd, at all integration points along

each random input in Eq. s7d. Since a large number of integration
points can be employed, the eDR method is more accurate than
the DR method. This is possible since the SMLS method produces
highly accurate one-dimensional responses. This approximate re-
sponse allows the incorporation of any numerical integration
method.

EFo
j=1

N

Ymsm1, . . . ,m j−1,X j,m j+1, . . . ,mNdG
> o

j=1

N

o
i=1

n

w j,iY
msm1, . . . ,m j−1,x j,i,m j+1, . . . ,mNd

> o
j=1

N

o
i=1

n

w j,iŶ
msm1, . . . ,m j−1,x j,i,m j+1, . . . ,mNd s7d

To recover singularity of the DR method due to a moment
based quadrature rule, it is suggested in Ref. f14g that the eDR
method use the adaptive Simpson rule as an alternative integration
approach. This allows more flexibility for the eDR method to
handle any distribution type encountered in practical engineering
problems. Consequently, the eDR method turns out to be more
efficient, accurate, and stable than the DR method.
The numerical procedure for the eDR method has the following

steps:

1. Define a reasonable set of sample points to be used for the

SMLS method, usually 2N+1 or 4N+1, depending on avail-
able resources and any prior knowledge of system nonlin-

earity. It is suggested that for a 2N+1 sample size, m and

m±3s will be used and for a 4N+1 sample size it will also

use m±s. The determination of the sample size totally de-
pends on the degree of nonlinearity in system performances

f14g. If a performance is highly nonlinear, the 4N+1 is used.

Otherwise, 2N+1 may be employed for the eDR method.
However, if one parameter is known to be extremely nonlin-
ear, additional sample points for that variable should be per-
formed. It should be noted that this does not require addi-
tional samples along the remaining dimensions;

2. Perform one-dimensional function approximations for all
random input parameters using the SMLS method;

3. Perform numerical integration using the adaptive Simpson
rule to calculate statistical moments for all approximate
functions in Eq. s5d; and

4. Create probability density sor distributiond function based on
statistical moments using a stabilized Pearson system
f17,18g.

5 Case Study

The proposed methodology is illustrated with an example rep-
resenting the assembly of a hood-pin bracket. As seen in Fig. 2,
the bracket consists of the attachment element and the locating pin
for the hood. The location of the pin is a critical dimension that
determines the appearance sgap and flushnessd and closure effort
of the hood. The material of each component is a mild steel with
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Young modulus E=20,700 N/mm2 and Poison’s ratio n=0.3. The
approximate length and height of this assembly is 150 mm by

150 mm.
The ABAQUS model was developed to replicate the assembly

process, as shown in Fig. 4. The assembly of the bracket includes
two components: the bracket itself including the locating pin for
the hood and the fender. Three contact areas have been identified
for this assembly. Each contact area defines a set of contact ele-
ment pairs between the two components. These contact areas 1, 2,
and 3 are circled in Fig. 3. Two additional contact areas are iden-
tified in the model; these areas correspond to the contact between
the welding tool and the components. These contact pairs s4 and
5d are indicated by rectangles in Fig. 3. The friction coefficient is
assigned a value of 0.1. In order to improve the convergence of
the model, a fine mesh is considered around the contact areas. The
contact pairs are used to avoid the penetration between compo-
nents and between a tool sclamp or welding gund and the assem-
bly components.

Four possible sources of variation have been simulated in the
assembly. The sources of variation are represented as dimensional
geometric errors in each component. As shown in Fig. 3, the
sources of variation are: the material thickness of the bracket and

fender, x1 and x2, respectively; the corner gap, x3; and the flange

gap, x4. These dimensional errors are normally caused by the
manufacturing process producing these two components. The FE
model is parameterized to include these four variables, which are
specified in Table 2. A beta distribution is used to describe the
random behavior of the input variables to avoid outliers in the
distributions that may cause difficulty in the convergence of the
finite element model. The key product characteristics in the
bracket assembly are the angle and location of the hood pin. The
objective of the analysis is to determine the angle change on the
pin after assembly. Simulations are conducted to determine the
statistical distribution and parameters that describe the random
nature of the angle after assembly due to the input variation on the

variables x1 ,x2 ,x3, and x4.
The assembly process is simulated following the methodology

presented in Fig. 1. First, the assembly components are located in
the station using a set of locators. The displacement of the left

flange on the bracket is constrained in all three DOFs stx, ty, and

rxy in the 2D plane modeld, where tx, ty, and rxy are the transla-
tional displacements along horizontal and vertical axes and the
rotational displacement on the 2D plane, respectively. The fender
is located using two locators at each extreme constraining the
three DOFs. The assembly simulation begins approaching the
lower electrode of the welding gun to the fender and moving the
upper electrode downward in order to close the gap between the
right ends of the two components. After the right end of the com-
ponents has been deformed, the vertical distance between the
welding gun tools is maintained at the combined thickness of the

two parts se.g., x1+x2d. Then, both components are joined together
using the bonded contact property and the connector elements in
the welding area not allowing for any separation. Finally, the
welding gun and the fixture at the right end of fender are removed,
which results in the assembly springback. Figure 4 shows the
change in the hood-pin angle before and after assembly. As can be
seen in the figure, the angle of the pin does not recover its nominal
position due to the assembly’s new constraints.

5.1 Results From the Noncontact Model and Contact
Model. In order to compare the results from the new contact
assembly methodology with respect to the traditional linear non-
contact assembly modeling, an MCS without considering contact
between the components or tools was conducted. The difference
of the effect between the noncontact model and contact model is
showed graphically in Fig. 5. As shown in the figure, the main
limitation of the linear assembly modeling is the penetration of the
bracket into the fender. Figure 5sad shows the expected results
using traditional MIC. As can be seen, the components penetration
remains after assembly. Even though this condition is physically
impossible, these results are common in assembly modeling. The
proposed methodology result for contact assemblies is presented
in Fig. 5sbd. Penetration between components is eliminated. This
solution provides a closer estimation of the physical phenomenon.

Table 2 Random input parameters

Random
variable

Physical
property Distribution

Mean
smmd

Range
smmd

x1 Thickness
Component 1

Beta 1.1 0.9–1.3

x2 Thickness
Component 2

Beta 1.0 0.7–1.3

x3 Corner gap Beta 1.5 0.0–3.0

x4 Flange gap Beta 3.0 0.0–6.0

Fig. 2 Hood bracket

Fig. 3 Hood bracket assembly model
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5.2 Nonlinear Contact Modeling Results. Using the predic-
tive nonlinear contact assembly model, the assembly of the hood-
bracket was studied. The relationship between the input variables

xi, shown in Table 2, and output variable y, the hood-pin angle,
was studied. First, the nonlinearity of the assembly response was

analyzed. After an initial analysis, the variables x3 and x4 were
identified as being significant to the response nonlinearity. In other
words, the pin angle is more sensitive to changes on the shape of

the bracket sparameters x3 and x4d than to changes in the thick-

nesses of the components sparameters x1 and x2d. The nonlinearity
relation between the pin angle and the variables x3 and x4 was
investigated by building a response surface with multiple simula-
tion runs, as shown in Fig. 6. For this study, two cases were
considered: compliant assemblies with and without contact con-
siderations. In the case of the linear model without contact, 15

points equally distributed along each range of x3 and x4 were

sampled, while keeping x1 and x2 at their mean values. The pin
angle was determined for the 225 data points. Figure 6sad shows
the results for the noncontact model results. As can be seen, the

angle of the pin is independent of the variable x3. This can be

explained because any change in the variable x4 only increases the
penetration between the components without affecting the spring-
back of the assembly. In contrast, the response surface for the
contact model was built with 20 equally spaced samples along the

x3 and x4 range. Therefore, a total of 400 finite element runs were
conducted to study the nonlinearity of the pin angle. Figure 6sbd
shows the nonlinear relationship between the input variables x3
and x4 and the output variable y for the contact model. Three
zones can be identified in the figure. First, Zone 1 corresponds to
the cases where the two components never become in contact,
except for the welding area. Zone 2 corresponds to the cases
where the two components experience a weak contact. Weak con-
tact means that the contact is observed as the corner section of the
upper component pushes the bottom component down; however
no significant component deformation occurs. Finally, Zone 3 cor-
responds to the case when the components significantly deform
during the assembly process due to the component interference.
During this interaction the corner section of the upper component
first pushes the bottom component down until it reaches the most
deformation, and then the corner section of the upper component
is forced to move to the left along the top surface of the bottom
component to compensate for the deformation on the flange.

5.3 Pin Angle Prediction Using EDR Method and Monte
Carlo Simulation. Direct MCS is performed by artificially gen-
erating a set of random numbers s5000 sample sized for variables

x1, x2, x3, and x4. Those variables are assumed to follow an inde-
pendent beta distribution with random properties in Table 2. A
beta distribution is used to describe the random behavior of these
variables to avoid outliers in the distributions that may cause dif-
ficulty in the convergence of the finite element model. The sample
size is chosen based on the following criteria: accuracy and effi-
ciency of the predictive model. The predicted model will be com-
pared between the MCS and the eDR methods in terms of the PDF
and statistical moments.
The flow chart for the enhanced dimensional reduction method

combined with the predictive model for contact assembly is

shown in Fig. 7. The eDR method used 4N+1 sampling points to

predict random behavior of the pin angle, where N=4, generating
a total of 17 sample points, which are evaluated using the FE
analysis. The sample points are chosen by the method discussed in
Step 1 of the eDR methodology. These sample points are listed in
Table 3. While employing the eDR method for uncertainty propa-
gation of the pin angle, one-dimensional response approximation
must be performed along each random variable using the SMLS
method. To show the accuracy of the stepwise moving least square

method, the response with respect to x4 and 25 FE analyses, where

x1, x2, and x3 remain constant, is shown in Fig. 8. As can be seen

Fig. 4 Finite element results from before and after assembly

Fig. 5 Finite element results after assembly, noncontact, and
contact linear models: „a… noncontact model; and „b… contact
linear model
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Fig. 6 Angle response with respect to variables Ã3 and Ã4: „a… noncontact
model; and „b… contact model

Fig. 7 The eDR method with predictive contact model
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the stepwise moving least squares method accurately approxi-

mates the response function. The response with respect to x4 is the
most nonlinear of the four input parameters, therefore all four
responses can be accurately approximated with this method.
In addition, in order to compare the advantages of the proposed

eDR method to model the nonlinear assembly processes, a tradi-
tional Taylor series expansion approach is used to estimate the

statistical moments. The equations are shown in Table 4 where Dxi

is considered as 0.5% of the range w.r.t. the corresponding xi. The
first-order Taylor series needs nine sample points and the second-
order Taylor series needs 33 sample points sincluding the nine
points required by first-order Taylor seriesd. The statistical mo-
ments estimates obtained via Taylor series expansion are pre-
sented in Table 5. From these results, the second-order Taylor
expansion predicts a larger error for the mean than eDR and even
a linear first-order Taylor expansion. This discrepancy can be ex-
plained due to the nonlinear behavior of the assembly response.
The nonlinear region of this model is away from the center of the

response surface sFig. 7sbdd while the Taylor is expanded around
the center point of the response surface. The larger error term of
first-order Taylor expansion accidently made the mean closer to
real.
As shown in Table 5, the eDR method estimated random be-

havior of the pin angle accurately and efficiently, compared to the
MCS. This is also verified from the PDF approximation, as shown
in Fig. 9. The compared results of noncontact and contact models
are shown in Table 5. MCS was used for the noncontact model to
predict the output distribution. For the contact model, MCS along
with the eDR method were used to approximate the output uncer-
tainty. The error percentage between the solutions of the MCS and
the eDR method for the contact model is also shown in the table.
The CPU time is the accumulated time starting from submitting
the ABAQUS input file to the ABAQUS analysis solver until the

Table 3 4N+1 sampling points and assembly response for the
eDR method

x1 x2 x3 x4 Y

0.9 1 1.5 3 1.8054
1 1 1.5 3 1.7514
1.2 1 1.5 3 1.6357
1.3 1 1.5 3 1.582
1.1 0.7 1.5 3 1.4966
1.1 0.85 1.5 3 1.6002
1.1 1.15 1.5 3 1.7696
1.1 1.3 1.5 3 1.8276
1.1 1 0 3 0.54317
1.1 1 0.75 3 0.99872
1.1 1 2.25 3 2.2272
1.1 1 3 3 2.6692
1.1 1 1.5 3 1.6933
1.1 1 1.5 0 1.0414
1.1 1 1.5 1.5 1.3444
1.1 1 1.5 4.5 1.7431
1.1 1 1.5 6 2.0324

Table 4 Statistical moments based on Taylor series expansion

Taylor series expansion Statistical moments

First-order Taylor expansion

YsXd>YsmXd+ o
i=1

4

]YsmXd/ ]xiDxi

mY >YsmXd

sY
2 > o

i=1

4

s]YsmXd/ ]xi
d2sxi

2

Second-order Taylor expansion

YsXd>YsmXd+ o
i=1

4

]YsmXd/ ]xiDxi

+ o
i=1

4

o
j=1

4

]
2YsmXd/ ]xi]x j DxiDx j

mY >YsmXd+ 1

2
o
i=1

4

]
2YsmXd/ ]xi

2sxi

2

sY
2 > o

i=1

4

s]YsmXd/ ]xi
d2sxi

2 +
1

2
o
i=1

4

o
j=1

4

]
2YsmXd/ ]xi]x j sxi

2 sxj

2

Table 5 Moments estimation results

With contact

Model
Method

No
contact
MCS MCS

eDRM
serrord

First-order
Taylor

expansion
serrord

Second-order
Taylor

expansion
serrord

Meansmmd 1.3653 1.6028 1.5811
s1.35%d

1.6165
s0.85%d

1.4125
s11.87%d

Std. dev. 0.4577 0.4423 0.4402
s0.48%d

0.4621
s4.47%d

0.4621
s4.47%d

No of FEAs 5,000 5,000 17 9 33
CPU time smind 7,500 10,000 34 18 66

Fig. 8 Nonlinearity prediction using stepwise moving least
squares method

Journal of Manufacturing Science and Engineering OCTOBER 2007, Vol. 129 / 941

Downloaded 30 Jun 2008 to 141.219.26.156. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ABAQUS solver finishes the simulation. It is evident that the eDR
shows good agreement in the mean and standard deviation with
the MCS. As shown in Fig. 6 that the pin angle response must

hold highly nonlinear interactions between x3 and x4, since the

stepwise response runs along the diagonal direction of x3 and x4.
According to the error analysis of the eDR method, numerical
error can be accumulated from biquadratic terms or higher. It is
thus obvious that numerical error is mainly due to highly nonlin-

ear interaction between x3 and x4. It is also expected that the MCS
will yield a minor degree of the error due to a finite number of
samples.
As shown in Fig. 9, there is a good correlation between the

histogram from the MCS and the PDF from the eDR method. So,
this case study shows that the eDR method produces an excellent
estimate of the uncertainty propagation of the highly nonlinear
assembly process.

6 Conclusions

This paper presents a new methodology for variation propaga-
tion modeling on compliant assemblies that include the contact
effect between components and assembly tools sfixtures and weld-
ing toolsd. The methodology is based on finite element methods. A
parametric model is used in order to incorporate the input varia-
tion from different variables. In addition, several elements to im-
prove finite element convergence were implemented. The new
model response from contact assembly is nonlinear; therefore, the

traditional sensitivity analysis is not adequate to estimate the sta-
tistical response of the characteristics of the assembly. In order to
improve the efficiency of the methodology compared with MCS
methods, the eDR method is used to sample and estimate the
statistical response of the system. A case study is presented for the
assembly of an automotive hood bracket. The proposed method-
ology combined with eDR produces an excellent estimate of the
uncertainty propagation on highly nonlinear assembly processes.
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