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using designated component analysis (DCA). DCA first defines a set of patterns based on
product/process information, then finds the significance of these patterns from the mea-
surement data and maps them to a particular set of faults. Existing diagnostics methods

has been mainly developed for rigid-body-based 3-2-1 locating scheme. Here an N-2-1
locating scheme is considered since sheet metal parts are compliant. The proposed meth-
odology integrates on-line measurement data, part geometry, fixture layout and sensor
layout in detecting simultaneous multiple fixture faults. A diagnosability discussion for the
different type of faults is presented. Finally, an application of the proposed method is
presented through a computer simulation. [DOL: 10.1115/1.1643076]

1 Introduction

Fixtures are used to locate and hold workpiece in manufactur-
ing. In general, fixture elements can be classified by their func-
tionality into locators and clamps. Locators establish the datum
reference frame and provide kinematic restraint. Clamps provide
additional restraint by holding the part in position under the ap-
plication of external forces during the manufacturing process. A
3-2-1 locating scheme is used to uniquely locate a rigid body,
constraining the six degrees of freedom of the part. According to
this principle, three locators are placed in the primary plane, two
in the secondary plane and one in the tertiary plane. However, for
compliant sheet metal parts, Cai et al. [1] showed that an N-2-1
principle is more adequate and is widely used in industry. The
N-2-1 fixture principle establishes that to locate and support com-
pliant sheet metal parts, it is necessary to provide more than 3
locators in the primary plane due to part flexibility.

In general, fixture failure directly affects part location and as-
sembly dimensional quality. Ceglarek and Shi [2] found that dur-
ing the launch of a new vehicle, fixture faults represent around
70% of all dimensional faults. Consequently, adequate fixture fail-
ure diagnosis can positively impact dimensional quality.

Due to existence of new measurement systems, such as optical
coordinate measurement machine (OCMM), a large amount of
dimensional data can be obtained from manufacturing processes.
Therefore, new opportunities for process diagnosis are available.
Several authors have studied fixture diagnosis in the last few
years. In general, past research in fixture diagnosis is based on
three major approaches: principal component analysis, correlation
clustering and least square regression.

In 1992, Hu and Wu [3] introduced the principal component
analysis (PCA) to identify sources of dimensional variation in
automotive body assembly. They used PCA to extract variation
patterns from dimensional data. Later, Ceglarek and Shi [4] pro-
posed a fixture fault diagnosis method combining PCA with pat-
tern recognition. They developed variation patterns for each hy-
pothetical fault based on the fixture and measurement sensor
layout. Then, they used principal component analysis to extract
variation modes from production data and map the modes with the
hypothetical variation patterns. This method focused on single as-
sembly fixture failure. Ding et al. [5] developed a diagnosis
method based on a state space dimensional variation model for
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multistage manufacturing processes using PCA. In addition,
Ceglarek and Shi [6] include considerations of measurement noise
in fixture failure diagnosis.

Correlation clustering is able to detect multiple dimensional
faults by matching a model behavior with the measured behavior.
Shiu et al. [7] developed a multi-station assembly modeling for
diagnostics in automotive body assembly process. The model is
based on critical characteristics such as the locating mechanism
(fixture to part interactions) and the joining conditions (part to part
interactions). The variation patterns are expressed by a correlation
matrix. Then, the correlation matrix from measurement data is
compared with the different simulated correlated matrices associ-
ated with the faults.

Multivariate process diagnosis has also been studied using a
least squares approach. The approach consists of relating the mea-
surement variation patterns to potential causes. The least squares
method is used to identify the significance of each of these poten-
tial causes [8—12]. Apley and Shi [9] used least squares algorithm
to identify the significance or severity of multiple fixture faults.
Fault severity was measured as the variance of the decomposition
of the data for each variation pattern. The variation patterns where
determined as the effect a fixture element fault over the measure-
ment points.

Finally, Carlson et al. [13] proposed a multi-fixture assembly
diagnosis model for rigid part assembly for single fault diagnosis.
The methodology combines statistical multivariate data analysis
with a fixture fault model. A fault is diagnosed if the measurement
data varies significantly in correspondence with a fixture fault
model. They use maximum likelihood estimators to calculate a
variation vector from the data.

PCA based methods are generally not adequate for pattern rec-
ognition in the presence of multiple fixture element faults. In ad-
dition, least squares methods are sensitive to the pattern definition.
Any change in one of the variation patterns will produce a change
in the data decomposition and consequently in the severity mea-
surement of different faults. Since multiple faults are not uncom-
mon in real applications, it is necessary to develop a diagnostic
methodology that works for simultaneous multiple fault cases as
well as for single fault cases. Liu and Hu [14] proposed a new
method called designated component analysis (DCA) for process
diagnosis. This methodology enables to successfully identify mul-
tiple fixture failures occurring simultaneously for sheet metal parts
in a 3-2-1 locating scheme.

An N-2-1 fixture layout is used to locate compliant sheet metal
parts [1]. However, there is a lack of tools for multiple fault di-
agnosis in N-2-1 locating schemes. Thus, the objective of this
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research is to develop a multiple fixture fault diagnosis methodol-
ogy for compliant sheet metal parts. The proposed methodology
enables to detect and isolate simultaneous fixture faults in an
N-2-1 locating scheme. The ability of the methodology to detect
fixture faults is studied considering independent fixture faults ver-
sus dependent fixture faults and non-nominal fixture elements ver-
sus missing fixture elements.

The remainder of this paper is organized as follows. Section 2
discusses the concept of designated components analysis and
highlights the main advantages of DCA over traditional PCA and
least squares methods. Section 3 presents the proposed diagnosis
methodology for multiple fixture fault isolation. Section 4 pre-
sents a statistical analysis to determine the significance of each
fault. Specific diagnosability conditions are addressed on Sec. 5.
To illustrate the proposed method, simulations results for a 4-2-1
locating scheme are presented in Sec. 6. Conclusions are summa-
rized in Sec. 7.

2 Designated Component Analysis

In order to conduct multiple fixture fault detection, Liu and Hu
[14] developed a new approach called designated component
analysis (DCA). The method first defines a set of mutually or-
thogonal vectors to represent fault patterns and then measure their
statistical significance from measurement data. The fault patterns
are defined from product/process knowledge based on part geom-
etries and sensor layout but independent of fixture, tooling layout
and measurement data. In other words, the assembly variation is
mathematically decomposed in terms of a set of pre-defined or-
thogonal fault patterns.

The structure for the diagnosis model is given by Eq. (1), where
y=[y,¥s ...y,]" is an n x I random vector that corresponds to a
set of n measured points over a part, D=[d,d, ... dg] isann x ¢
constant matrix that represents the designated deformation pat-
terns, Xx=[x;x, ...x,] is a ¢ x I random vector corresponding to
the designated components, and w is an #» X 1 random vector with
known covariance matrix 3,,= oI that represents the system
noise. I is the identity matrix. Considering that sufficient amount
of data may be obtained from an in-control process, o, may be
estimated [15]. In this case, o,, will be the deviations in the mea-
surement data that are only explained by common causes.

y=Dx+w 1)

The objective of the diagnosis methodology is to estimate the
amount of variation in the data y that can be explained by each
fault pattern defined in the matrix D. A fault is defined as a source
of variation, instead of a shift in the mean. Therefore, if the vari-
ance of a pattern (x;) is significant, a fault will be identified.
Using DCA, the estimated contribution of each pattern may be
calculated as,

£=D"y

On the other hand, least squares estimates the contribution of each
pattern as,

£=(D™D) 'DTy.

Comparing DCA with least squares methods. DCA may be con-
sidered as a special case of least squares, where the deformation
or variation patterns are forced to be orthonormal. Therefore, the
estimation of % is simplified by (D™D) " '=1. In other words, the
measurement data variation is decomposed through projection on
a set of known orthogonal patterns. The main advantage on using
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a) In-plane deformation patterns for rigid body motion

b) Out-of-plane deformation patterns for rigid body motion

Fig. 1 Variation patterns for rigid body motion [14]

orthonormal patterns in DCA 1is that the significance of each pat-
tern may be extracted individually and in any order without
changes in the magnitude of the detected fault. In contrast, least
square based methodologies must extract the patterns simulta-
neously. Therefore, ill-conditioned systems may be difficult to di-
agnose.

The main limitations of PCA for multiple fault isolation are
addressed using DCA. First, in PCA, the principal components are
orthogonal by definition. However, the fixture faults vectors may
not be orthogonal. On the other hand, in DCA, the designated
patterns are forced to be orthogonal however the designated com-
ponents are not constrained to be orthogonal. Second, in PCA, the
deformation patterns are data driven, therefore, the eigenvector
may lack physical interpretation and can be sensitive to measure-
ment noise. In DCA, the patterns are defined a priori; therefore,
they do not change under the presence of multiple failures or
measurement noise. Finally, using PCA, multiple individual varia-
tion patterns may be compounded in one eigenvector representing
the direction of maximum variation, this direction may not have
any physical interpretation. In contrast, the designated patterns are
product/process based, i.e., there is a direct physical interpretation
for each pattern.

The designated patterns in DCA are defined based on a physical
interpretation. For example, to completely represent rigid body
motion (3-2-1 locating scheme case), 6 patterns are needed: three
translations along the X, Y and Z axes, and three rotations along
the X, Y and Z axes. In general for sheet metal parts, rigid body
motion can be decomposed into the in-plane and the out-of-plane
components. As shown in Fig. 1, in-plane displacements can be
represented by two translations (7'y and 7'y) and one rotation (R ;)
and out-of-plane displacements can be represented by one trans-
lation (7;) and two rotations (Ry and Ry) (Fig. 15).

For compliant parts, the six patterns defined for rigid body mo-
tion are not enough to completely represent the part variation.
Therefore, additional patterns must be defined. In theory, there is
infinite number of possible deformation modes for compliant
parts. However, in real cases a reduced number of patterns should
be enough to represent part deformation given fixture failures.
Some common deformation patterns for a 5-2-/ locating scheme
are defined in Fig. 2. These patterns are defined for the sheet metal
parts deformations in the out-of-plane direction. The patterns are
simple bending along the X (By) and Y (By) axes and twisting
(Ty). The number and the type of patterns will depend of the
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Fig. 2 Additional variation patterns for compliant parts

number of fixture elements. The user must define the patterns
accordingly to the expected deformation patterns that are feasible
for the located part.

The only requirement for DCA is that the designated patterns
must be orthogonal between each other so that the designated
components are independent of the calculation sequence. It should
be clear that the orthogonality requirement over the set of patterns
does not force the designated components to be orthogonal. In
fact, designated components will not be uncorrelated since the
only vectors that have this property are the principal components.
PCA by definition generates independent and orthogonal compo-
nents.

If the designated patterns do not satisfy the orthogonality con-
dition, the vectors should be orthonormalized. After the vectors
are orthonormalized, it must be checked that the physical interpre-
tation of the patterns did not change.

The first step in the DCA methodology is to define the desig-
nated patterns. Using the same format as the eigenvectors in PCA,
a designated pattern i can be defined as,

Pi
| P2 .
pPi= B 1_154-'>q

Pim

where p;; represent the displacement of the part at the j-th sensor
location for the i-th designated pattern, m is the number of sen-
sors, and ¢ is the number of designated patterns. Figure 3 shows
an example of a sheet metal part using a 4-2-7 locating scheme
with nine (m=9) sensors, M;. Four clamps, L; to L,, hold the
part in the out-of-plane direction.

Combining the variation patterns defined in Figs. 1 and 2, the
designated pattern vectors for the out-of-plane displacements can
be summarized in Table 1. For simplification only the out-of-plane
deformations are considered and it is assumed that the sensors
measure part deviation in the z-direction. The designated patterns
are defined for the sensor layout shown in Fig. 3.

The designated patterns shown in Table 1 represent the six
modes of positional variation and deformation presented previ-
ously. However, they do not satisfy the orthogonality condition

Mz Mg Mo
X % 0
[] []
L4 L3
X X X
M4 M5 M6
Yo% ol % S X
X M1 M2 M3

Fig. 3 Sheet metal part with a 4-2-7 locating scheme
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Table 1 Example of designated patterns

Designated
Pattern D1 P2 P3 Pa Ps Pe
Sensor (T7) (Rx) (Ry) (Bx) (By) (Tw)

1 1 1 1 1 1 -1
2 1 1 0 1 0 0
3 1 1 -1 1 1 1
4 1 0 1 0 1 0
5 1 0 0 0 0 0
6 1 0 -1 0 1 0
7 1 -1 1 1 1 1
8 1 —1 0 1 0 0
9 1 -1 -1 1 1 -1

required for the designated component analysis. For example,
{(pi,ps)#0, where (p,p,) is the inner product between vectors
p, and p,. Therefore, the vectors should be orthonormalized.
From a defined set of non-orthogonal patterns, it is possible to
construct an orthonormal basis using the Gram Schmidt orthonor-
malization [16]. The Gram Schmidt algorithm makes it possible to
find an orthonormal basis for the subspace spanned by the desig-
nated patterns (vectors). Figure 4 shows the Gram Schmidt algo-
rithm, where || represents the Euclidean norm of a vector. By
definition vector d, will be orthogonal to d, therefore, the algo-
rithm subtracts the nonorthogonal components from p,. This it-
eration can be repeated for the other vectors in the basis. The
result will be an orthonormal basis. This procedure is repeated
until the last vector dy has been defined. It is important to recall
that any set of designated patterns represented by the vectors p;
can be transformed in an orthonormal basis. However, they can
loose the physical interpretation of the variation patterns. There-
fore, the vectors d; (i=1,2...,q) need to be checked to assure
that they keep their physical interpretation. To maintain the physi-
cal interpretation the new orthogonal vector should in principle
keep its original direction. In other words, it can be translated or
scaled but not rotated. The capability to construct the set of or-
thogonal designated patterns while still maintaining a physical

Set 4, =B
Io.]

i=2

v

il

5, =P <pi’dj>'dj <

J=l

v

S,
d =t
I 4

i=i+1

Yes

No

END

Fig. 4 Gram-Schmidt Algorithm [16]
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interpretation depends of the number of sensors and the sensors
layout. Further investigation must be done for optimal sensor
placement in order to assure orthogonality.

[xi1 X2 - xip]=[di diz

where i=1,2,...,q; q is the number of variation patterns; m is
the number of sensors, x;’s are the designated components; and y;;
is the j-th observation of the measurement data for the i-th sensor.
The measurement data matrix, Y, can approximately be written as
a sum of rank 1 matrices [14] corresponding to the designated
components.

Y~P;+ Pyt Pyt ... +P, 3)
dil
dp .
Pi(mxn): '[xil Xi2 xin] 1:17~-~>q
d

im
Y~ dlx}--i- dzx}-i- S -i-dqxqT

The variation of each designated component can be calculated
individually. If the variation patterns are defined as unit vectors, it
can be proven that for rigid body motions the sum of the compo-
nent variance is equal to the sum of the variances of the raw data.
However, for compliant parts, the designated patterns may not
necessary explain all the variation from the measurement data. It
is necessary the exact deformation modes to completely represent
compliant part deformations.

Then,

n

q
E U§.$2 oy =trace(y) C))
i=1 o=l

The contribution of each designated component (C;) can be
calculated individually as the proportion of the measurement data
variation explained by each designated component (Eq. (5)). In
other words, C; is the significance level of each variation pattern
and depends of how much of the production data variation can be

explained by the deformation mode i.
2
ag

L= —Xi 0
Ci= traaasy < 100% )

By definition designated components are not necessarily inde-
pendent. Therefore, the correlation among the designated compo-
nents can be calculated using Eq. (6).

n
2 Xik™Xjk
= /

njm———— ij=12,...g (6)
\/ 2 x?k'E sz'k
k=1 k=1

3 Multiple Fixture Fault Diagnosis

The presence of one or multiple faults in the assembly system is
reflected in the measurement data obtained on-line. The objective

94 / Vol. 126, FEBRUARY 2004

After defining the designated patterns, d;’s, the corresponding
designated components can be calculated with the measurement
data using the following equation:

Y Yz Yin
Y21 Y22 cee Yon
din]- )
Ym1 Ym2 Yimn
Y(mxn)

of any diagnosis methodology is to be able to identify the fault or
faults root causes from the available data. As presented in the
previous section, using DCA, it is possible to extract the contri-
bution of each designated pattern to the total variation of the mea-
surement data.

The designated patterns are defined off-line using the CAD data
for part geometry and sensor layout. Orthogonality must be
checked, if the set of patterns are not orthogonal, the Gram-
Schmidt algorithm may be used. It must be noted that the defini-
tion of the designated patterns does not depend on the number of
fixtures or fixture layout. After identifying the variation patterns,
the relation between these designated patterns (for example: 7,
Ry, Ry, By, By, Ty) and the fixture failures must be obtained.
There are two ways to establish these relationships. First, a kine-
matic analysis can be done. The expected result of one fixture
faults is analyzed and explained in terms of the known designated
patterns. For example, if fixture elements L, L,, L and L, fail
simultaneously and dependently (Fig. 3), it is expected that the
part is moving in the z-direction. From DCA, almost a 100 per-
cent of the data variation will be explained by the translation
pattern, 7,. Therefore, the following logic relation can be con-
structed,

T,=LiALyAL3AL,

where, the symbol “A” represents the logic AND (the faults occur
simultaneously). The same analysis can be used to obtain other
relations between fixture faults and variation patterns and their
correlations. However, for compliant part analysis and multiple
fixtures, these logic relations may be difficult to obtain. Therefore,
the second method proposed is to generate the relationships using
computer simulation. For each fault, simulated data may be gen-
erated, and using DCA, the significant variation patterns may be
obtained. In addition, the correlation among the designated com-
ponents may be obtained. Next section includes an example where
the entire logic table is constructed for a 4-2-1 locating scheme.
The logic table is generated using finite element methods. For
each fixture element failure a random displacement with distribu-
tion N(0,1) is applied on the corresponding fixture. Measurement
data is recorded for each sensor in the FEM model. Applying
DCA the contribution and correlation of each pattern is obtained
for each simulated fault.

Comparing the components contribution and correlation ob-
tained on-line from the measurement data and the logic table gen-
erated by simulation, the faults can be isolated. Figure 5 shows a
flow chart for the proposed methodology. The significance of each
fault is obtained by statistical testing.

4 Statistical Analysis

Using DCA, the contribution of each pattern to the total varia-
tion of the systems can be determined. However, it is necessary to
find the statistical significance of each fault. For example, even for
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Fig. 5 Multiple fixture fault diagnosis methodology using DCA

in-control situations (no fault), the noise in the data may generate
large values for each Ci. Therefore, a large Ci value does not
imply that pattern 7 is significant. Using statistical hypothesis test-
ing, the statistical significance of each fault may be determined.
The proposed approach assumes that the covariance matrix of w
(Eq. 1) is known and x; (designated components) has a normal
distribution. Based on these assumptions, the variance of each
fault (o'ﬁi) for in-control conditions (y=w) can be calculated as:

N 2
3M=g21
2y _ 2
{0'_,( ,}w =0,
Therefore, using hypothesis testing for the variance of a normal
population, the test in Eq. (7) may be conducted to identify if the
contribution of a designated pattern is significant. The interpreta-
tion of the test is that for each designated component 7, the vari-
ance of the pattern must be statistically greater that the variance of
the noise w to diagnose a pattern.

Hy :ofi = a'i,
i=1,...

leof>a'fv = & )

To evaluate the hypothesis, we will use the test statistic:

, (m—1)S}
Xo=—=2 —

o,

where, Sﬁ_ is the estimate of the variance of the designated com-

ponent i, and m is the number of observations in the data y. The
null hypothesis H, will be rejected if

24 .2
Xo > X a,m—1
If the null hypothesis is rejected for a specific deformation pat-

tern j, then, the pattern is a significant contributor of the system
variation.

5 Discussion on Diagnosability

Once the methodology has been developed, some diagnosabil-
ity issues must be analyzed. Diagnosability is defined as the abil-
ity of a diagnostic procedure to detect and isolate a specific fixture
element failure or a set of fixture elements failure. The diagnos-
ability analysis is divided in two cases: 1) the case where a single
fixture element fails in the system; and 2) more than one fault
occur simultaneously. The type of failure will also impact the
fixture diagnosability. Three types of fixture faults are identified:
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Fig. 6 Different fault types for clamps

the fixture element is loose or not present, fixture elements offset
are independent, and fixture elements offset are dependent.

(1) Single Fixture Element Failure. 'When one and only one
fixture element fails in a 3-2-1 locating system, the proposed
methodology can successfully detect and isolate a fixture fault, as
many of the previous proposed methodologies (PCA, least square
approach). However, for an N-2-1 (N>3) locating scheme, if one
of the clamps or holding elements is not present, the system will
not be able to detect this fault. A missing clamp will not affect the
part location and therefore will not affect the measurement data.
Figure 6(a) shows an example of a missing clamp, the part is
successfully located and held, and there is no sign of a fixture
fault in the data. This is characteristic of an over constrained lo-
cating system. However, if the loose element is a locator, the part
will move freely in one direction and the fault will be detected and
identified. These situation will be valid if do not consider the
effect of the gravity force is not considered. If the gravity force
actuates in the direction constrained by the missing clamp, it will
always possible to diagnose a missing clamp.

On the other hand, if the locating elements become worn or are
displaced from their original nominal position, but still present,
the part will be forced to a non nominal position and the method-
ology will be able to successfully detect and identify the fault
(Fig. 6(b)). In this case, the methodology is valid for in-plane and
out-of-plane failures caused by locating or clamping elements.

(2) Two or More Fixture Failure Simultaneously. In the
presence of two or more fixture faults simultaneously, the pro-
posed methodology will be able to detect and isolate the faults
depending of the relation among the faults. Simultaneous faults
are grouped in three cases abovementioned, fixture elements are
loose or not present, independent fixture elements offset, and de-
pendent fixture elements offset.

a) Missing Fixture Elements: Diagnosability for multiple fixture
elements depends on whether the missing fixtures are locators or
clamps. For a missing locator, it is always possible to identify the
fault, if the sensor layout is able to produce an orthogonal set of
designated patterns. However, if the missing fixtures are clamps,
the system will not be always diagnosable. The diagnosability
condition can be written as,

N—n,<3 (8)

where N is the total number of clamps in the N-2-1 locating
scheme and . is the number of simultaneous faults. Eq. (8) rep-
resents the over constrained scenario described in the single fail-
ure section. If the part is over constrained, it will not be possible
to diagnose a missing clamp until several elements fail simulta-
neously and the part become under constrained.

b) Independent Fixture Element Offset: Assuming that the fix-
ture element failures are independent, then the variance of the
fixtures will be different and the fixture deviations are not signifi-
cantly correlated.

corr(XLt_,XL/_)~0 ij=1,...,n,

Xy is the fixture deviation for fixture element i; and n, is the

number of simultaneous faults. In this situation, diagnosability
cannot be assured.
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Fig. 7 Missing fixture elements failures

¢) Dependent Fixture Element Offset: The basic assumption is
that the fixture failures are related with each other, therefore they
move in the same direction.

o, ~0p.
Foy i,j=1 n
corr(X;,X; )=~1 > vl
i J

o, is the standard deviation for fixture element i. The proposed

methodology is able to detect and isolate any fault for dependent
fixture element offset, independently of the number of fixture fail-
ures and the fixture element, clamp or locators.

6 Simulation Results

In this section, the proposed diagnosis methodology is applied
for a simulated case. Multiple fixture diagnosis is applied for a
4-2-1 locating scheme. Four clamps are used to hold the part in
the out-of-plane direction, and a 4-way pin-hole locator and a
2-way pin-slot locator are used to locate the part in the in-plane
direction. Specifically, this simulation applied DCA to diagnose
failure in the out-of-plane direction. In general, the same proce-
dure can be applied for the in-plane (rigid body) fault diagnosis. A
nine sensor layout is used to measure out-of-plane deviations (Fig.
3). The designated patterns used for DCA are the same defined
previously in Table 1, after been orthonormalized using the Gram-
Schmidt algorithm.

Kinematics analysis and logic table approach will be used to
show the reach of the algorithm. First, kinematic analysis is ap-
plied to study some possible faults for single and multiple missing
clamps. Figure 7 shows faults F';, F,, F3 and F. In fault Fy,
clamp L, is missing, this fault is not possible to be detected in a
4-2-1 locating scheme, under the assumption of no gravity. Under
the gravity force action, the analysis for any missing fixture will
change. In fault F,, the clamps L; and L, are missing. In this
case the part can freely rotate along an axis through L, and L.
Using DCA the analysis gives that the rotation along the y-axis
and the translation along the z-axis (out-of-plane) are significant.
The rotation and translations patterns occur simultaneously be-
cause the part is not rotating along the rotation axes defined for
Ry . In addition, both patterns are positive correlated. Therefore,
fault ', can be diagnosed if:

Tzl\R Y/\COIT( TZ ,R Y)

The same analysis can be followed for fault ', where all the
clamps are missing. In this case if we have measurement data that
shows that the part is moving in the z-direction, the only possible
fault is F;. The significant designated pattern is 7, .

For more complex fault patterns, it may be difficult to map the
significant designated patterns with the failure fixtures, then a
logic table can be used. The logic table may be constructed for all
the potential different combinations of faults using the simulation
method. Each potential fault is simulated and the DCA results
saved in the table. In this case a logic table was obtained for the
4-2-1 locating scheme assuming that: only the holding fixture el-
ements can fail; and the fixture fault offset are dependent. Table 2
shows the relationship between different faults and the designated
patterns. For example, if after extracting the designated patterns
from the measurement data, we have that: the significant patterns
are T;,, Ry, Ry, Ty and from the correlation analysis, that
Corr(T;,—Ry), Cort(T;,—Ry), Corr(T,,Ty) are significant;
then we can conclude that clamps L, L, and L5 are failing (Case
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Table 2 Logic relations for fixture fault diagnosis (4-2-1 fixture
layout) considering dependent fixture faults

Case Designated Patterns Fixture Fault

1 TARXYARyA Ty L,
Cort(T;,—Ry)ACorr(T; ,Ry)ACorr(T;,Ty)

TyARYARyAT L,

Cort(T;,—Ry)ACorr(T,,—Ry)ACort(T,,— Ty)

3 T7ARYARyA Ty L,
Corr(T, ,Ry)ACorr(T,,— Ry)ACorr(T,,Ty)

4 T ARXARyA Ty Ly,

Cort(T; ,Ry)ACort(T, ,Ry)ACort(T,,— Ty)

5 TyARyACorr(T;,—Ry) LiAL,

6 Ty~nTyACort(T,,Ty) LiALs

7 T,ARyACorr(T,,Ry) L\AL,

8 TyARynCorr(T,,—Ry) LoALy

9 TyATwnCort(T7,—Ty) LoALy

10 T,ARyACorr(T,,Ry) LinLy

11 T7ARYARyA Ty LiALyALy
Cort(T;,—Ry)ACorr(T;,—Ry)ACorr(T,,Ty)

12 T ARXYARyAT LiALyALy
Cort(T;,—Ry)ACorr(T, ,Ry)ACort(T,,— Ty)

13 TAARYARyAT LiAL3AL,

Corr(T, ,Ry)ACorr(T, ,Ry)ACorrt(T, ,Ty)

14 T7ARYARyA Ty LyAL3ALy
Cort(T; ,Ry)ACorr(T,,—Ry)ACort(T;,— Ty)

15 T, LiALyAL3AL,

11, Table 2). The negative sign in the correlation coefficients de-
note a negative correlation. From Table 2, it may also be noticed
that the patterns By and By do not represent any of the fixture
faults. For the 4-2-1 locating layout used in this case only four
designated patterns may be sufficient to diagnose the described
faults.

7 Conclusions

PCA presents several limitations for multiple faults detection:
principal components are orthogonal (independent) by definition,
however, the fixture faults vectors may not be orthogonal; PCA
are data driven, therefore, the eigenvector direction may be sensi-
tive to measurement noise; using PCA, multiple individual varia-
tion patterns are compounded in one eigenvector representing the
direction of maximum variation, this direction may not have any
physical interpretation. Designated component analysis addresses
these limitations: the designated components do not need to be
orthogonal, DCA is process driven, and it is capable to isolate
multiple fixture failures.

DCA is used to identify multiple fixture faults in compliant
sheet metal assembly systems. An N-2-/ locating scheme is con-
sidered. Extracting the significance contribution of each desig-
nated pattern to the total variation of the measurement data and
the correlation among them is possible to detect different fixture
faults. The designated components are defined off-line using the
CAD data for part geometry and sensors layout, and are indepen-
dent of the fixtures layout.

The ability of the proposed procedure to detect and isolate a
specific fixture or a set of fixture failure is studied. Multiple fix-
ture diagnosability depends of the number of fixture faults that
occurs simultaneously; the type of fixture elements, clamps or
locators and the correlation among the faults. In general, it can be
concluded that locator faults are always diagnosable. On the other
hand, clamps are not always diagnosable. In addition, dependent
faults are more diagnosable than independent type of faults.

A simulation study is presented for multiple fixture diagnosis in
a 4-2-1 locating scheme. The methodology shows a good potential
for on-line multiple fixture diagnosis.
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