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Compliant Assembly Variation
Analysis Using Component
Geometric Covariance
Dimensional variation is one of the most critical issues in the design of assembled prod-
ucts. This is especially true for the assembly of compliant parts since clamping and
joining during assembly may introduce additional variation due to part deformation and
springback. This paper discusses the effect of geometric covariance in the calculation of
assembly variation of compliant parts. A new method is proposed for predicting compliant
assembly variation using the component geometric covariance. It combines the use of
principal component analysis (PCA) and finite element analysis in estimating the effect of
part/component variation on assembly variation. PCA is used to extract deformation
patterns from production data, decomposing the component covariance into the individual
contributions of these deformation patterns. Finite element analysis is used to determine
the effect of each deformation pattern over the assembly variation. The proposed meth-
odology can significantly reduce the computational effort required in variation analysis of
compliant assemblies. A case study is presented to illustrate the methodology.
@DOI: 10.1115/1.1644553#

1 Introduction

Dimensional integrity is an important aspect of product quality
in many manufactured consumer goods. Problems with dimen-
sional integrity may adversely affect the final product functional-
ity and the process performance. For example, large dimensional
variation in an automotive body assembly may cause product
problems in vehicles such as water leakage and wind noise, as
well as process difficulties such as fitting problems in subsequent
assembly operations.
Dimensional variation is inherent to any manufacturing process.

Therefore, it is important to model and predict how it propagates
through the processes. Fast and accurate evaluation of inherent
process variation can be critical in determining the final dimen-
sional variation of an assembled product and in selecting robust
product/process designs. Several models have been proposed in
the past to predict how variation propagates during assembly. Ini-
tial approaches were focused on rigid part assembly using either
the Root Sum Squares ~RSS! method or Monte Carlo Simulation.
Detailed review and discussion can be found in Lee and Woo @1#
and Chase and Parkinson @2#. Recently, multi-level variation
propagation models have also been developed. Mantripragada and
Whitney @3# proposed a state transition model to predict the varia-
tion propagation in multi-stage assembly systems. Ding et al. @4#
presented a state space model for dimensional control in sheet
metal assembly assuming rigid parts. For compliant assembly, Liu
and Hu @5# proposed a compliant assembly model to analyze the
effect of deformation and springback on assembly variation by
applying linear mechanics and statistics. Using finite element
methods ~FEM!, they constructed a sensitivity matrix to establish
a linear relationship between the incoming part deviation and the
output assembly deviation. They noted that the variation among
the various nodes on a part may not be independent. As a result,
the covariance of sources of variation must be included in the
calculation of the assembly variation. Camelio et al. @6# extended
Liu and Hu’s approach to multi-station systems using state space
representation by incorporating sources of variation from parts,
tooling and their interactions.
The objective of this paper is to provide a new method of varia-

tion analysis for compliant assembly using the geometric covari-
ance of the assembly components. It combines Principal Compo-
nent Analysis ~PCA! with finite element methods in estimating the
effect of components variation on assembly dimensions. PCA is
applied to extract deformation patterns from production data by
decomposing the component covariance in the individual contri-
bution of each deformation pattern. Finite element methods are
used to determine the effect of each deformation pattern on the
assembly variation. The proposed methodology is computationally
more efficient than existing methods.
The remainder of this paper is organized as follows. Section 2

presents the background of the main concepts used in this paper.
These concepts are compliant assembly variation analysis, geo-
metric covariance and principal component analysis. Section 3
presents the new methodology to calculate assembly variation us-
ing deformation patterns. In Section 4, the proposed methodology
is illustrated by an example. Finally, Section 5 draws the
conclusions.

2 Background

This section presents the main concepts required to understand
the proposed methodology. First, compliant assembly variation
analysis is discussed and the concept of the sensitivity matrix is
presented. Second, the idea of geometric covariance is presented.
Finally, PCA is shown as a multivariate statistical tool to extract
deformation patterns from measurement data.

2.1 Compliant Assembly Variation. Different variation
analysis models are used to predict the effect of component varia-
tion on the assembly variation. In general, assembly variation is
estimated as a function of the components geometry, process lay-
out and the contribution of various sources of variation. Three
sources of variation are identified in compliant sheet metal assem-
bly: part or component variation, fixture variation and welding
gun variation. Part variation includes the mean deviation, m, and
the variance of the deviation, s2 at key measurement locations. A
deviation is the difference between the actual part dimension and
the nominal dimension at a specific point in a given direction. In

this paper, part deviation is denoted as a vector VPRn31, in
which the elements correspond to deviations at each key measure-
ment locations.
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Using the method of influence coefficients presented by Liu and
Hu @5#, it is possible to predict the impact of the part deviation
(Vu) on the assembly deviation (Va). This method is used to
obtain the sensitivity matrix ~S! for a sheet metal assembly, where
the elements of the sensitivity matrix, s i j , measure the sensitivity
of the assembly at node i to the incoming part deviation at node j.
Therefore, the assembly deviation (Va) can be calculated using
Eq. ~1!. By definition Va is the assembly deviation vector, where
the column elements represent the assembly deviation at the key
measurement points. Vu is the component deviation vector, where
the elements represent the component deviation at the welding
nodes.
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Given that the input part deviations are random variables, the
assembly quality can be described using the mean deviations and
the variance of the assembly key characteristic points. Applying
the expectation operator over Eq. ~1!, we have

E~Va!5E~S•Vu! (2)

ma5S•mu

where ma and mu are the mean deviation vectors for the key points
on the assembly and components, respectively.
In addition, the assembly covariance matrix can be calculated

using the covariance definition:
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where Sa and Su represent the covariance matrix for the assembly
and components, respectively.
The mean and covariance matrices for the input components

must be obtained from statistical analysis of the measurements of
production parts in the assembly line. In general, the production
data is obtained using coordinate measurement machines ~CMM!
or optical coordinate measurement machines ~OCMM!. Equations
~2! and ~3! show that to estimate the assembly variation ~mean
and covariance! it is necessary to know beforehand the mean and
covariance matrix of the components.
Under the assumption of independent sources of variation, the

assembly variation could be calculated as:
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2 •$s j j
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However, a simple analysis shows that the assumption of inde-
pendency is usually not adequate. In Eq. ~4!, assuming indepen-
dent random variables, the assembly variation will increase as the
number of welding points ~sources of variation! increases. This
phenomenon exists because as the number of sources increases,
the welding points are getting closer to each other, and the inde-
pendence assumption is forcing adjacent points to vary in different
directions. Intuitively, close points on the same surface cannot
vary independently. Moreover, intuition shows that if the number
of welds increases, the assembly variation should decrease be-
cause the stiffness of the assembly increases with the number of
welds ~more constraints! and the springback will be smaller.
Therefore, independency becomes questionable. To correctly esti-
mate the assembly covariance matrix, it is required to know or
estimate the components covariance matrix.

2.2 Geometric Covariance of Compliant Parts. As men-
tioned in the previous section, the physical relation among the
neighboring points on the same surface must be considered. Intu-
itively, if a part is deformed by applying a displacement or force at
a specific point, other points in the vicinity will follow the dis-
placement of the point being deformed. As in the example shown
in Fig. 1, if node i is displaced d i , nodes j and k in its vicinity will
move d j and dk respectively. The amount of deformation on nodes
j and k will depend on the geometric relationship between the
nodes and the stiffness of the part.
The dependence in deviation among the adjacent points is

called geometric covariance by Merkley @7#. Obviously, geometric
covariance arises from surface continuity. This property is espe-
cially important during the assembly of compliant sheet metal
parts. Merkley showed that geometric covariance clearly impacts
the assembly variation of sheet metal assemblies as was shown by
Eq. ~3!.

2.3 Principal Component Analysis of the Covariance
Matrix. From the discussions in Section 2.1, it was shown that
to estimate the assembly variation in compliant sheet metal as-
sembly it is necessary to know the covariance matrix of the com-
ponents to be assembled. In addition, the effect of geometric co-
variance in sheet metal parts implies that different sources of
variation over the same surface are highly correlated. A new prin-
ciple will be established in this section to take advantage of the
geometric covariance effect and the covariance matrix. It will be
shown that, in the presence of correlated sources of variation and
with knowledge of the covariance matrix, it can be computation-
ally more efficient to decompose the covariance matrix into dif-
ferent variation patterns. PCA will be applied to obtain the re-
quired decomposition of the covariance matrix.
PCA is a multivariate statistical method to reduce the dimen-

sionality of highly correlated data via orthogonal projection into a
space defined by a few significant eigenvectors @8,9#. Hu and Wu
@10# were the first to use PCA to extract variation patterns from
the correlation matrix in auto body assembly. PCA transforms a

Fig. 1 Geometric covariance effect
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set of n dependent variables into a set of uncorrelated variables. If
we consider the source of variation as the correlated variable X,
using a linear transformation, we can transform our data into a set
of uncorrelated data, Z. Then, the part variance can be decom-
posed into the individual contributions of these uncorrelated
variables,
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where the vector b i5@b1i b2i ¯ bni#
T is the eigenvector i ob-

tained from the principal component analysis applied to the cova-
riance matrix Su. Then, each eigenvector (bi) of the covariance
matrix will represent one variation pattern or mode of deformation
of the assembly components, and its respective eigenvalue (l i)
will correspond to the variance of that pattern. Rewriting Eq. ~5!
in a matrix form and calculating the covariance, we have:

X5B•Z

cov~X!5Su5E b~B•Z!•~B"Z!Tc

5B•EbZ•ZTc•BT

5B•cov~Z!•BT (6)

Since B is the eigenvector matrix of Su, the covariance of X
will be the covariance matrix Su of the input data. In addition,
from the definition of PCA, Z is a set of independent variables
whose variances are the eigenvalues l i’s. Then, Eq. ~6! can be
rewritten as:

Su5B•L•BT (7)

where,

L5F
l1

�
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G
Physically, Eq. ~7! means that the covariance matrix from the

production data can be decomposed into different deformation
patterns, where each pattern is mathematically represented by an
eigenvector. The advantage of this decomposition in compliant
assembly variation analysis will be shown in the next section.

Another useful property of PCA is that the different patterns are
ordered so that the first eigenvector represents the variation pat-
tern with the largest variance; the second eigenvector represents
the pattern with the second largest variance, and so on. This prop-
erty is extremely useful for variation reduction since usually only
a small number of patterns will contribute significantly to the
assembly variation. Therefore, PCA can also be applied as a valu-
able data reduction tool where the problem can be simplified by
removing the deformation patterns with negligible variance.
Figure 2 shows some examples of deformation patterns for a

sheet metal part that is fully constrained on one of its edges.
Figures 2~a! and 2~c! show a bending pattern along the x and y
axes, respectively. Figure 2~b! shows a twisting pattern. The de-
viation vector of each part is defined as the deviation from the
nominal shape at equidistant points along the free edge. The cor-
responding deviation vectors ~eigenvectors! are presented as the
vector b in Fig. 2.

3 Variation Analysis Using Geometric Covariance

The key concept behind variation analysis for compliant sheet
metal assembly is to establish a linear relationship between the
deviations of incoming parts and the deviation of the assembly.
Using the method of influence coefficients @5#, the assembly varia-
tion can be calculated by Eq. ~1!. Calculating the covariance of
the assembly variation vector Va ~Eq. ~3!! and combining it with
the decomposition from the PCA ~Eq. ~7!!, we have,

Sa5S•Su•S
T
5S•B•L•BT•ST5~S•B!•L•~S•B!T (8)

Further analysis shows that the assembly covariance matrix can
be decomposed into the individual contribution of each eigenvec-
tor from the component covariance matrix. Writing matrix B in
terms of the eigenvectors bi,
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Defining d i5S•bi, then

Fig. 2 Example deformation patterns
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Sa5d1•l1•d1
T
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The vector di will be called variation vector i, and it can be seen
as the contribution of the ith-eigenvector to the assembly varia-
tion. In other words, the variation vector, di, is the assembly de-
viation result for the displacements given by the ith-deformation
pattern on the component.
The assembly variation can be decomposed in terms of the

individual contribution of each eigenvector. In this analysis, we
assume that the component covariance matrix is stationary, i.e.,
the deformation patterns do not change over time. In addition, in
sheet metal assembly just a small number of deformation patterns
should have a significant contribution on the covariance matrix.
Then, the number of variables used to represent the assembly
variation can be reduced from the original number of input
sources of variation to a smaller number of significant deforma-
tion patterns. The assembly variance can be rewritten as.

Sa5d1•l1•d1
T
1d2•l2•d2

T
1 . . . 1dp•lp•dp

T (10)

where p is the number of significant modes of deformation.
Based on the above decomposition approach, a new methodol-

ogy for variation simulation of sheet metal assembly processes is
presented. From Eq. ~10!, it can be seen that the assembly cova-
riance matrix can be obtained knowing the variation vectors, di’s,
and the variance of the deformation patterns, l i’s. Therefore, in-
stead of using the method of influence coefficients to generate the
sensitivity matrix, a new approach is developed.
From Liu and Hu @5#, the method of influence coefficients can

be used to calculate the component response to a unit force ap-
plied at each of the N sources of variation ~using N finite element
runs! and the corresponding assembly springback for each source
of variation ~another N steps of FEM!. Now, considering the con-
cept of variation vectors, it is only necessary to calculate the com-
ponent and assembly response to each deformation vector ~eigen-
vectors!. This method needs only 2p finite element runs.
The following steps describe how to calculate the vectors, di,

i51, . . . ,p , using finite element methods.
Step 1: Component Response: A displacement vector, given by

the significant eigenvectors (i51, . . . ,p), is applied over the
‘‘unwelded’’ components. FEM is used to calculate the force vec-
tor required to produce those displacements on each source of
variation. The forces are recorded in a column vector.

F
F1i

F2i

]
Fni

G
The process is repeated for each of the p deformation patterns.

Then, the total force matrix is:

F5F
F11 F12 ¯ F1p

F21 F22 ¯ F2p

] ] ] ]

Fn1 Fn2 ¯ Fnp

G
Step 2: Assembly Response: Each force vector @F i# (i

51, . . . ,p) is applied over the ‘‘welded’’ structure ~assembly! to
calculate the resulting assembly displacement vector. The result-
ing vector is the assembly response or springback to the specific
eigenvector deformation and corresponds to a variation vector, di.
The process is repeated for each of the p deformation patterns to
obtain each of the vectors di, i51, . . . ,p .
Figure 3 shows the flow chart used to calculate the assembly

variation using the eigenvector and eigenvalues obtained from the
covariance matrix of the incoming components data.

4 Case Study

The proposed variation analysis method for compliant assembly
is illustrated using the assembly of a safety crash bar to the inner
door ~Fig. 4!. The door has approximate dimensions of 1000
mm31 mm3500 mm. The safety bar has a thickness of 4 mm.
The material of both parts is mild steel with Young modulus E

5207,000 N/mm2 and Poisson ratio n50.3. A 3-2-1 locating
scheme is used to locate each part. For the door, the locating
scheme consists of a hole ~constraint displacement in x and z
directions! at node 626, a slot ~constrained displacement in
z-direction! at node 746, and 3 locating pads ~constrained dis-
placements in y-direction! at nodes 626 (L1), 746 (L2), and
489 (L3). For the safety bar, the locating scheme consists of a
hole ~constrained displacements in x and z directions! at node
5187, a slot ~constrained displacement in z-direction! at node
5083, and 3 locating pads ~constraint displacements in y-direction!
at nodes 5187 (L1), 5083 (L2), and 5129 (L3). The parts are
joined together using 4 welds that constrain nodes
5000/2974 (W1), 5002/2983 (W2), 5206/2719 (W3), and
5207/2939 (W4). Parts, fixtures and welding points are shown in
Fig. 4.

Fig. 3 Flow chart of the assembly variation methodology

Fig. 4 Door and safety bar assembly example
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Using finite element methods and the method of influence co-
efficients, the sensitivity matrix, S, can be obtained. The input
variables are the sources of variation defined as the welding
points, W i , i51, . . . ,4 on the safety bar ~Fig. 4!. The output
variables are the measurement points, M i , i51, . . . ,4, on the
door ~Fig. 4!.

S5

W1 W2 W3 W4

F
20.0246 0.0258 0.4073 20.2355

0.1833 20.1517 20.2878 0.1960

0.0148 0.0150 0.0656 20.0514

0.1654 20.1773 0.2234 20.0127

G
M 1

M 2

M 3

M 4

It is assumed that the input sources of variation from the safety
bar ~part deviations from the nominal before assembly! have the
following mean, standard deviation and covariance matrix.

W1 W2 W3 W4

Mean 20.0078 20.0024 0.0031 20.0024
Standard Deviation 1.1138 0.4982 1.1171 0.4982

Su5F
1.2405 0.2463 20.7478 0.2463

0.2463 0.2482 0.2500 0.2482

20.7478 0.2500 1.2478 0.2500

0.2463 0.2482 0.2500 0.2482

G
The covariance matrix has been simulated assuming that there are
two deformation patterns in the data.
The door is assumed to be nominal. In other words, the assem-

bly will be only affected by deformations ~part variation! on the
crash bar. Applying PCA, the input covariance matrix can be de-
composed into the following pairs of eigenvectors, bi, and eigen-
values l i .

B5F
0.7089 0.5037 0.5000 0.0000

0.0018 0.5000 20.5000 0.7071

20.7053 0.4963 2 .5000 0.0000

0.0018 0.5000 0.5000 20.7071

G

L5F
2.0008

1.0001

0

0

G
From these results, it can be seen that there are two principal

components that contribute for the total variation of the safety bar.
Then, the system with initially 4 variables is reduced to a set of
two independent variables. Moreover, 66% of the process varia-
tion can be explained by deformation pattern 1. Table 1 shows the
eigenvectors and their respective contributions to the total input
variation.
Knowing that the input variation can be explained by just two

deformation patterns, the method of influence coefficients ~sensi-
tivity matrix! calculations can be reduced to obtain the assembly
variation response to each of these patterns. Figure 5 shows the
effect of each deformation pattern (b1,b2) on the assembly. Ap-
plying the variation vectors methodology developed in this paper,
it is possible to obtain the assembly variation vectors, di, for each
deformation pattern ~Table 2!. Figure 5 represents the variation
vectors d1 and d2.
Using Eq. ~10! and the assembly variation vectors, it is possible

to calculate the assembly covariance matrix. Table 3 compares the
covariance matrix calculation using the two methods, the method
of influence coefficients and the method of assembly variation
vectors presented in this paper. It can be seen that the results of
both methods are similar. However, using the information from
the geometric covariance from the input variables, it is possible to
reduce the total number of computations required to calculate the
assembly covariance matrix. Indeed, the number of FEM runs in
the method of influence coefficients is proportional to the number
of sources of variation. On the other hand, the number of FEM
runs in the assembly variation vector method is proportional to the
number of deformation patterns. Therefore, in cases where the
data is highly correlated and there are few patterns but a large
number of sources of variation, the computational effort can be

Fig. 5 Assembly variation for each input variation pattern „door bar assembly…

Table 1 Principal component analysis summary

Deformation
Patterns

Eigenvalue
l i

% of Total
Variance

Eigenvector
bi

Pattern 1 2.0008 66.6 b15@0.7071 0 2 .07071 0#T

Pattern 2 1.0001 33.3 b25@0.50 0.50 0.50 0.50#T

Patterns 3–4 0.0000 0.0 b35@ . . . #T Neglected (No contribution)

Table 2 Variation vectors

Deformation Patterns Assembly Variation Vector

1 d15@20.3051 0.3329 20.0363 20.0407#T

2 d25@0.0864 20.0301 0.0217 0.0993#T
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substantially reduced by the new method. In general, the assump-
tion that there is a reduced number of deformation patterns should
be valid for real applications as is the case of the assembly of
sheet metal parts, where surfaces tend to be smooth.

5 Conclusions

A new method for variation propagation analysis in compliant
assembly has been presented using the covariance matrix of the
components. The method replaces the method of influence coeffi-
cients @5# using variation vectors defined for each deformation
pattern identified from the covariance of the components. The
following observations were made:
• Geometric covariance plays an important role in the calcula-

tion of the assembly variation of compliant parts. In general, the
sources of variation in sheet metal assembly are strongly corre-
lated due to surface continuity. Assuming independent sources of
variation produces an over estimation of the assembly variance.
• Principal component analysis ~PCA! can be applied to extract

deformation patterns from the covariance matrix. PCA may be
used to reduce the number of variables in the problem, from n
sources of variation to p significant deformation patterns.
• Assembly variation of compliant parts can be decomposed in

terms of the individual contribution of the components deforma-
tion patterns. Neglecting deformation patterns with small vari-
ance, it is possible to reduce the number of independent sources of
variation in the system.
• The variation vector methodology reduces the number of fi-

nite element computations required to calculate the assembly
variation. The approach is based on the generation of variation
vectors for the most significant deformation patterns.
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Table 3 Comparison of the assembly covariance

Assembly Covariance

Method of Influence Coefficients Variation Vectors

Sa5S•Su•S
T Sa5D1•l1•D1

T
1D2•l2•D2

T

Sa5F
0.1948 20.2070 0.0241 0.0338

20.2070 0.2238 20.0249 20.0304

0.0241 20.0249 0.0031 0.0052

0.0338 20.0304 0.0052 0.0133

G Sa5F
0.1944 20.2065 0.0241 0.0335

20.2065 0.2234 20.0249 20.0302

0.0241 20.0249 0.0031 0.0051

0.0335 20.0302 0.0051 0.0132

G
# FEM
Runs

.8 4
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