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Abstract

An analysis was performed to evaluate the bearing strength of pin-loaded composite joints using a two parameter char-
acteristic curve model. This model involves determination of characteristic dimensions in tension and compression and
based on this model, a two-dimensional stress analysis was used to determine the stress distribution around the fastener
hole. In this analysis, characteristic dimensions in tension and compression were evaluated using the point stress failure
criterion and joint bearing failure evaluated using the Yamada–Sun failure criterion. Results were compared with available
experimental data for joints made from AS4/3501-6 graphite epoxy composite laminates and good correlation observed
when evaluated as function of edge distance to hole diameter. However, the analysis yields conservative results when joint
strength is evaluated as a function of plate width to hole diameter.
Ó 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Joints are necessary load transfer elements of components or structures and the performance of these struc-
tures or components is critically dependent upon the behavior of any joints they contain. Joining by mechan-
ical fasteners is a common practice in the assembly of structures and since joint failure can lead to premature
failure of the structure, joint strength is an important property in any design. Mechanical joining requires riv-
ets and/or bolts through holes which result in stress concentrations that may ultimately lead to failure. Adhe-
sive joints, on the other hand, do not require holes and distribute the load over a larger area than mechanical
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joints [1]. However, they are very sensitive to surface treatment, service temperature, humidity, and other
environmental conditions [2]. On the other hand, for structural components that must be removed or easily
replaced, mechanical fasteners play an important role.

The increased use of advanced composite materials for structural applications has led to extensive research
aimed at developing an understanding of the behavior of these structures to the presence of holes and inclu-
sions. Accurate and proper design of mechanically fastened joints require the determination of the stress dis-
tribution at the contact surface and within the plate followed by the use of an appropriate failure theory to
determine the strength of the joint. The method of complex functions developed by Muskhelishvili and
extended to anisotropic materials by Lekhnitskii [3] and Savin [4] has been used by several investigators
[5–14] to obtain stress distribution in composite plates weakened by an opening and deformed by forces
applied to the mid plane.

Nomenclature

A,B normal stresses in the reinforcement
A;B normalized stresses in the inclusion
A*,B* parameters dependent on laminate properties
D hole diameter
D* parameter dependent on laminate properties
E distance from laminate edge to hole center
E1,E2,G12,Ex,Ey,Gxy elastic modulus
KT;K

1
T stress concentration factors for finite and infinite plates

L plate length
P applied uniform stress at infinity
pk,qk parameters dependent on laminate properties
rc characteristic curve model
R hole radius
Rt,Rc characteristic dimension in tension and compression
s shear failure mode
S lamina shear strength
Sij elastic compliance
t tension failure mode
T plate thickness
u,v displacements in x and y directions
v0 pin displacement along y-direction
W plate width
XT,XC,YT,YC lamina strengths in tension and compression
Y finite width correction factor
rx,ry stresses in x and y direction
sxy shear stress
rN; r

1
N notch strength for finite and infinite plate

rNC
compressive strength of laminate with inclusion

rF unnotched laminate tensile strength
rFC

unnotched laminate compressive strength
lk roots of characteristic equation
m12,mxy Poisson’s ratio
Uk;U

0
k stress function and its derivative (k = 1,2)

k coefficient of friction
s12 lamina shear stress
fk mapping function
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The present analysis of the bearing strength of pin-loaded composite joints involves using the Chang–Scott–
Springer characteristic curve model and a two-dimensional analysis to evaluate the stress distribution around
the fastener hole. Calculations are based on the analytical method of complex stress functions and on expres-
sions used to satisfy the displacement boundary conditions of the contact area between the pin and the hole
[10]. For the characteristic curve, characteristic dimensions in tension and compression were evaluated by
applying the point stress failure criterion to a center notch plate subjected to tensile loading and a plate con-
taining a circular inclusion subjected to compressive loading. The Yamada–Sun failure criterion [15] was then
used to evaluate joint failure and the results compared with available experimental data and good correlation
observed.

2. Stress analysis

In order to evaluate the strength of composite pinned joints (Fig. 1), the stress distribution along a char-
acteristic dimension around the hole must first be evaluated. The conditions for failure can then be predicted
with the aid of an appropriate failure criterion. The Yamada–Sun failure criterion was used for this analysis.
This criterion is given by the relationship [15]

r1

X

� �2

þ
s12

S

� �2

¼ e2 ð1Þ

where r1 and s12 are the longitudinal and shear stresses, X is the ply longitudinal strength and S is the ply shear
strength. In this model, failure is expected to occur when the value of e is greater than or equal to unity.

The characteristic curve model proposed by Chang et al. [8] can be expressed as

rcðhÞ ¼ Rþ Rt þ ðRc ÿ RtÞ cos h ð2Þ

where R is the hole radius, Rt and Rc the characteristic dimensions in tension and compression, and the angle h
ranges in value from ÿp/2 to p/2 (Fig. 2). The parameters Rt and Rc were evaluated by applying the point
stress failure criterion to a plate with an open hole loaded in tension and a plate with an inclusion loaded
in compression [9].

Konish and Whitney [13] proposed the following approximate solution for the normal stress distribution ry
(x, 0) in an infinite orthotropic plate with an open hole loaded in tension by a uniform stress P at infinity

ryðx; 0Þ

P
ffi 1þ

1

2
nÿ2 þ

3

2
nÿ4 ÿ

ðK1
T ÿ 3Þ

2
ð5nÿ6 ÿ 7nÿ8Þ ð3Þ

Fig. 1. Geometry of composite pin joint.
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where

n ¼
x

R
ð4Þ

and K1
T is the orthotropic stress concentration factor defined as

K1
T ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

S22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS11S22Þ

q

ÿ S12 þ
ðS11S22 ÿ S2

12Þ

2S66

� �

s

ð5Þ

The point stress failure criterion can be applied to Eq. (3) to determine the characteristic dimension at which
failure is expected to occur. This criterion assumes that failure occurs when the transverse stress at some dis-
tance Rt away from the opening reaches the unnotched tensile strength, rF, of the material. This criterion is
expressed as

ryðRþ Rt; 0Þ ¼ rF ð6Þ

Substituting Eq. (6) into Eq. (3), the ratio of the notched to the unnotched strength is obtained as

r1
N

rF

¼
2

2þ nÿ2 þ 3nÿ4 ÿ ðK1
T ÿ 3Þð5nÿ6 ÿ 7nÿ8Þ

ð7Þ

where r1
N is the tensile strength of the notched laminate and, at x = R + Rt,

n ¼
Rþ Rt

R
ð8Þ

Eq. (7) contains two unknown parameters, the unnotched laminate tensile strength rF and the characteristic
length Rt. A value of Rt for a laminate can be determined from Eq. (7), if the experimental data for both the
notched and unnotched strengths are available or by applying classical lamination theory in conjunction with
an appropriate lamina failure criterion to evaluate these parameters.

Eq. (7) represents the stress reduction factor for an infinite plate. In order to apply this relation to plates of
finite width, finite width correction factors must be applied. The finite width correction factor (FWC) can be
expressed as [16]

Fig. 2. Composite plate with characteristic curve description.
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KT

K1
T

r1
N ¼ rN ð9Þ

where KT and K1
T denote the stress concentration at the opening edge on the axis normal to the applied load

for a finite plate and an infinite plate respectively. However, it should be noted that since tensile failure occurs
at x = R + Rt, Eq. (9) represents an approximate relation between KT=K

1
T and rN=r

1
N .

For composite plates with a circular opening, Tan [16] has shown that the FWC factor can be expressed as

KT

K1
T

¼ Y ¼
2ÿ ðD

W
Þ
2
ÿ ðD

W
Þ
4

h i

2
þ

ðD
W
Þ
6
ðK1

T ÿ 3Þð1ÿ ðD
W
Þ
2
Þ

h i

2
ð10Þ

where D is the hole diameter and W is the plate width. From Eqs. (9) and (10), the notched strength for a finite
laminate can be obtained from the notch strength determined for an infinite plate as

rN ¼ Y r1
N ð11Þ

As stated previously, in order to evaluate failure of mechanically fastened joints based on the characteristic
curve model, the characteristic length in compression must also be evaluated. This value is obtained from eva-
luation of the stress distribution in a plate with an inclusion subjected to compressive loading.

The normal stress ry(x, 0) for an infinite orthotropic plate with an inclusion under uniform stress P at infi-
nity can be expressed as [3]

ryðx; 0Þ

P
¼ 1þRe

1

l1 ÿ l2

ÿð1ÿ BÞðl1 ÿ il1l2Þ ÿ ðiþ l1ÞA

w1

þ
ð1ÿ BÞðl1 ÿ il1l2Þ þ ðiþ l2ÞA

w2

� �� �

ð12Þ

where li (i = 1,2) are the roots of characteristics equation

S11l
4 þ 2ðS12 þ S66Þl

2 þ S22 ¼ 0 ð13Þ

and

wk ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn2 ÿ 1ÿ l2
kÞ

q

nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1ÿ l2
k

q

� � ; k ¼ 1; 2 ð14Þ

In Eq. (12), A and B can be obtained from the following relations:

A ¼
A

P
¼

1

D
S11S22ðk þ nÞ þ S11S

0
22kð1þ nÞ þ S22ðS12 þ S66 þ S0

12Þ
h i

B ¼
B

P
¼

1

D
S22ðS11 ÿ S0

11Þ þ S11ðS12 ÿ S0
12Þkð1þ nÞ

h i

ð15Þ

where A and B denote the normal stresses in the reinforcement along the x and y axis, the primed quantities
denote the elastic constants for the inclusion,

D ¼ ðS11S22 þ S0
11S

0
22Þk þ S22ðS66 þ 2S12Þ þ ðS11S

0
22k þ S22S

0
11Þnÿ ðS12 ÿ S0

12Þ
2
k ð16Þ

and

k ¼ ÿl1l2 and n ¼ ÿiðl1 þ l2Þ ð17Þ

Eq. (12) is the solution for the stress distribution adjacent to the inclusion in an infinite orthotropic plate with
a filled circular cavity. In order to apply the point stress criterion to determine Rc, a symbolic computer code
was written using Mathematica to determine the real part of this equation [9]. From this analysis, the real part
of Eq. (12) is expressed as

ryðx; 0Þ

P
¼ 1þ

W11 þW12 þW21 þW22

DT

� �

ð18Þ
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where

W11 ¼ ÿAb2 þ ðBÿ 1Þb3 þ Aa2ð1þ bÞ ÿ ðBÿ 1Þð1þ bÞa3 þ An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ a2
q

ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

� �

W12 ¼ b 1ÿ Aÿ Bÿ n2 þ An2 þ Bn2 þ An

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ a2
q

ÿ ð1ÿ BÞn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

� �

W21 ¼ ÿaA n2 ÿ 1þ b2 þ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

� �

W22 ¼ aðBÿ 1Þ 1ÿ n2 þ b3 ÿ ðbþ 1Þn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ a2
q

þ bn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

� �

DT ¼ ðaÿ bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ a2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ a2
q

� �

n2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 ÿ 1þ b2

q

� �� �

ð19Þ

and

a ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex

Gxy

ÿ 2mxy þ 2

ffiffiffiffiffi

Ex

Ey

s

v

u

u

t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex

Gxy

ÿ 2mxy ÿ

ffiffiffiffiffi

Ex

Ey

s

v

u

u

t

8

<

:

9

=

;

b ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex

Gxy

ÿ 2mxy þ 2

ffiffiffiffiffi

Ex

Ey

s

v

u

u

t ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex

Gxy

ÿ 2mxy ÿ

ffiffiffiffiffi

Ex

Ey

s

v

u

u

t

8

<

:

9

=

;

ð20Þ

The point stress criterion can then be applied to obtain Rc, the characteristic length in compression. This
criterion is expressed as

ryðRþ Rc; 0Þ ¼ rFC
ð21Þ

and substitution of Eq. (21) into Eq. (18) gives

r1
NC

rFC

¼
1

1þ W11þW12þW21þW22

DT

� �h i ð22Þ

where rFC
is the compressive strength of the unnotched laminate, r1

NC
the compressive strength of the notched

laminate with inclusion and, at x = R + Rc,

n ¼
Rþ RC

R
ð23Þ

A value of Rc for a laminate can be determined from Eq. (22), if the experimental data on the unnotched com-
pressive strength of the plate and the compressive strength of the notched plate with an inclusion are available.
If experimental data is not available, these values can be obtained by applying classical lamination theory in
conjunction with an appropriate lamina failure criterion [12].

3. Strength prediction

Consider an infinite plate with a circular opening subjected to pin load FP, as shown in Fig. 3. As seen in
this figure, the hole boundary can be described by contact and no contact regions. In this analysis, the pin is
assumed to be rigid and of the same diameter as the hole. Additionally, slip is assumed to occur throughout
the contact region and coulomb friction chosen to evaluate the condition of friction between the pin and the
hole.

The stresses in the plate can be expressed as [3]

rx ¼ 2Re l2
1U

0
1ðz1Þ þ l2

2U
0
2ðz2Þ

ÿ �

ry ¼ 2Re U0
1ðz1Þ þ U0

2ðz2Þ
ÿ �

sxy ¼ ÿ2Re l1U
0
1ðz1Þ þ l2U

0
2ðz2Þ

ÿ �

ð24Þ
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Let the displacement of the pin along the y-axis due to the applied load be denoted by v0. The boundary con-
ditions within the contact region for this problem can be expressed as

v ¼ v0=c and u ¼ 0 h ¼ �
p

2
ð25Þ

v ¼ v0 and u ¼ 0 h ¼ 0 ð26Þ

ðv0 ÿ vÞ cos h ¼ u sin h ÿ
p

2
6 h 6

p

2
ð27Þ

where u and v are the displacement along x and y directions, respectively, and c is a constant.
Additionally, at the contact boundary h = ±p/2

rx ¼ 0

sxy ¼ 0
ð28Þ

The displacements u and v along the hole can be expressed by the following trigonometric series

u ¼ U 1 sin 2hþ U 2 sin 4h

v ¼ V 1 cos 2hþ V 2 cos 4h
ð29Þ

where Ui and Vi (i = 1,2) are constants to be determined from the boundary conditions.
For the case where the plate is loaded by a rigid pin which has the same diameter as the hole, the stress

functions can be expressed as [10]

U1ðz1Þ ¼ A� ln f1 þ
cÿ 1

2c

q2 ÿ ip2

2D� ÿ
cþ 1

c

ip2

2D�

� �

v0

f21
þ
cþ 1

2c

q2 ÿ ip2

2D�

v0

f41
ð30Þ

U2ðz2Þ ¼ B� ln f2 þ ÿ
cÿ 1

2c

q1 ÿ ip1

2D� ÿ
cþ 1

c

ip1

2D�

� �

v0

f22
ÿ
cþ 1

2c

q1 ÿ ip1

2D�

v0

f42
ð31Þ

where A*, B*, D*, pk and qk are constants that depend on the material properties and complex roots l1 and l2
of the characteristic equation,

fk ¼
zk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2k ÿ R2ð1þ l2
kÞ

q

Rð1ÿ ilkÞ
ð32Þ

Fig. 3. Schematic representation of a pin loaded plate.
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and

zk ¼ xþ lky; k ¼ 1; 2 ð33Þ

Substituting the derivatives of Eqs. (30) and (31) into Eq. (24) results in the following relations for the stresses
in the plate

rx ¼ 2Re
A�

f1
ÿ 2

cÿ 1

2c

q2 ÿ ip2

2D� ÿ
cþ 1

c

ip2

2D�

� �

v0

f31
ÿ 4

cþ 1

2c

q2 ÿ ip2

2D�

� �

v0

f51

" #

A1l
2
1

(

þ
B�

f2
ÿ 2 ÿ

cÿ 1

2c

q1 ÿ ip1

2D� þ
cþ 1

c

ip1

2D�

� �

v0

f32
þ 4

cþ 1

2c

q1 ÿ ip1

2D�

� �

v0

f52

" #

A2l
2
2

)

ð34Þ

ry ¼ 2Re
A�

f1
ÿ 2

cÿ 1

2c

q2 ÿ ip2

2D� ÿ
cþ 1

c

ip2

2D�

� �

v0

f31
ÿ 4

cþ 1

2c

q2 ÿ ip2

2D�

� �

v0

f51

" #

A1

(

þ
B�

f2
ÿ 2 ÿ

cÿ 1

2c

q1 ÿ ip1

2D� þ
cþ 1

c

ip1

2D�

� �

v0

f32
þ 4

cþ 1

2c

q1 ÿ ip1

2D�

� �

v0

f52

" #

A2

)

ð35Þ

sxy ¼ ÿ2Re
A�

f1
ÿ 2

cÿ 1

2c

q2 ÿ ip2

2D� ÿ
cþ 1

c

ip2

2D�

� �

v0

f31
ÿ 4

cþ 1

2c

q2 ÿ ip2

2D�

� �

v0

f51

" #

A1l1

(

þ
B�

f2
ÿ 2 ÿ

cÿ 1

2c

q1 ÿ ip1

2D� þ
cþ 1

c

ip1

2D�

� �

v0

f32
þ 4

cþ 1

2c

q1 ÿ ip1

2D�

� �

v0

f52

" #

A2l2

)

ð36Þ

where

Ak ¼
fk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2k ÿ R2ð1ÿ l2
kÞ

q ; k ¼ 1; 2 ð37Þ

Since it is desired to determine the stresses along the hole contour, Eqs. (34)–(36) can be transformed to polar
coordinates through the following relations

rr ¼ rx cos
2 hþ ry sin

2
hþ 2sxy cos h sin h

rh ¼ rx sin
2
hþ ry cos

2 hÿ 2sxy cos h sin h

srh ¼ ðry ÿ rxÞ cos h sin hþ sxy cos
2 hÿ sxy sin

2
h

ð38Þ

where rr, rh, and srh are the transformed radial, tangential and the shear stresses, respectively. Additionally, in
Eqs. (34)–(36), the parameters v0 and c can be determined from the material properties of the plate and the
effects of friction between pin and plate. The friction condition can be expressed as

Table 1

Material properties for AS4/3501-6 laminates

E1 (GPa) 144.14

E2 (GPa) 11.72

G12 (GPa) 6.69

m12 0.33

XT (GPa) 1.86

XC (GPa) 1.48

YT (GPa) 0.05

YC (GPa) 0.21

S (GPa) 0.06

Rt (cm) 0.09

Rc (cm) 0.13
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Z

p=2

0

srhRdh ¼ ÿk

Z

p=2

0

rrRdh ð39Þ

where the frictional coefficient k is assumed constant along the contact boundary.
To determine the stress distribution along the characteristic curve, x and y in Eq. (33) are replaced by rc sinh

and rccosh, respectively and a program written using Matlab to determine the real parts of Eqs. (34)–(36).
Once the laminate stresses are calculated from Eqs. (34)–(36), classical laminate plate theory can then be used
to compute the lamina stresses and the Yamada–Sun failure theory used to evaluate joint failure load and fail-
ure mode. Material properties for AS4/3501-6 graphite/epoxy laminates, summarized in Table 1, were used for
this analysis. Also shown in Table 1 are the values of Rt and Rc obtained from Ref. [9]. Results generated from
this analysis were compared with available experimental data for composite pinned joints made from AS4/
3501-6 graphite/epoxy laminates utilizing steel pins [17]. The experimental results of Ref. [17] are summarized

Table 2

Experimental and predicted bearing strengths and failure modes for pin-loaded AS4/3501-6 [(45/0/-45/0/90/0/45/0/-45/0)2]s laminates with

varying E/D ratios [17]

E/D Experimental bearing strengths

(MPa)

Predicted bearing strengths

(MPa)

Experimental failure

modes

Predicted failure

modes

D = 0.635 cm, L = 15.24 cm, T = 0.584 cm

1 320 402 s s

1.5 600 712 s b/s

2 802 772 b/s b

3 900 825 b b

4 990 888 b b

5 980 840 – b

Table 3

Experimental and predicted bearing strengths and failure modes for pin-loaded AS4/3501-6 [(45/0/-45/0/90/0/45/0/-45/0)2]s laminates [16]

with varying W/D ratios [17]

W/D Experimental bearing strengths

(MPa)

Predicted bearing strengths

(MPa)

Experimental failure

modes

Predicted failure

modes

D = 0.635 cm, L = 15.24 cm, T = 0.584 cm

2 680 672 t b

3 945 749 b b

4 986 771 b b

5 976 781 b b
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Fig. 4. Comparison between predicted results and experimental data as a function of edge to diameter ratio.
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in Tables 2 and 3 and, along with the results generated from the present analysis, displayed in Figs. 4 and 5. In
Tables 2 and 3, b (bearing), s (shear) and t (tension) refer to the modes of failure while D, L, W and T refer to
the diameter, length, width and thickness of the plate, respectively. Fig. 4 compares the prediction of the
present analysis to experimental data as a function of edge distance to hole diameter (E/D) while Fig. 5
compares the prediction as a function of plate width to hole diameter (W/D). As shown in these figures,
the present analysis gives conservative results when evaluated as a function of plate width to hole diameter
while good agreement is observed when evaluated as function of edge distance to hole diameter.

4. Conclusions

An analysis was performed to evaluate failure of pin loaded composite joints using a two dimensional stress
analysis to evaluate the stress distribution along a characteristic dimension around the hole. The characteristic
dimensions were obtained using the point stress criterion in conjunction with the Chang–Scott–Springer char-
acteristic curve model and the Yamada–Sun failure criterion used to predict failure loads and failure modes.
Available experimental data for AS4/3501-6 graphite/epoxy laminates was utilized to evaluate joint bearing
strength. Bearing strength was evaluated as a function of plate width to hole diameter (W/D) and edge dis-
tance to hole diameter (E/D). From the present analysis:

1. Good agreement is observed with experimental data for the graphite/epoxy laminates when the bearing
strength is evaluated as function of edge distance to hole diameter. However, when evaluated as a function
of plate width to hole diameter, the analysis gives conservative results.

2. In addition to the prediction of bearing strength, the proposed analysis was also used to predict failure
mode using the Yamada–Sun failure theory. Again, the analysis shows good agreement with experimental
data in the prediction of the failure mode for the edge distance to hole diameter analysis. Good agreement is
also observed for the plate width to hole diameter analysis.
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