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Abstract This paper introduces a new set of compatible orbits called “Two-Way Orbits,”

whose ground track path is a closed-loop trajectory that intersects at certain points with tan-

gent intersections. The spacecraft passes over these tangent intersections once in a prograde

mode and once in a retrogrademode.Motivations are found for the need to have simultaneous

observations of the same target area in both Earth observation and reconnaissance systems.

The general mathematical model to design a Two-Way Orbit is presented for the specific case

where the tangent points are experienced at the orbit extremes, perigee and apogee. As for

the general case, Two-Way Orbit conditions are formulated and numerically solved. Results

show that, in general, Two-Way Orbits could be formed over any point on Earth. Since Two-

WayOrbits use compatible orbits, the theory of Flower Constellations can be applied to them.

Using these Two-Way Orbits, this paper also introduces the Two-Way Flower Constellations

that have one spacecraft prograde and one retrograde passing simultaneously over the tangent

intersection.

Keywords New orbits · Compatible orbits · Satellite constellations

1. Introduction

With the introduction of Flower Constellations (FC) (Mortari et al. 2004a) newly unified

family of satellite constellations characterized by compatible orbits and axial-symmetric

dynamics has been created. The most interesting feature of this novel methodology is that for

some particular value of the design parameters, the entire constellation forms a rigid object

(e.g., a triangle, square, circle, 3-D ellipsoid, star, or more complex shapes) that rotates
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about the constellation axis of symmetry with constant angular velocity. The characteristic

dynamics of an FC preserve the shape of this novel space object (time invariant) and the

orientation of this space object can be freely chosen.

Flower Constellations open a new frontier on complex satellite formations for two main

reasons. First, Flower Constellations can be seen as constituted of two distinct parts: an

“internal part,” associated with the motion of all the satellites along a prescribed identical

relative space track, and an “external part,” associated with the dynamic of the whole constel-

lation, as a rigid object, rigidly spinning with constant angular velocity. Second, these new

constellation objects are used as building blocks to construct more complex configurations –

with extremely promising solutions – to accomplish more complex tasks.

Flower Constellations, and the more recently introduced Synodic and Relative Flower

Constellations (Mortari et al. 2005), combine a number of new attractive features suitable for

many potential classical applications (communications, Earth and deep space observation,

coverage, navigation systems, etc.), as well as for new and advanced concepts.

A Flower Constellation is built using orbits that are compatible with respect to an assigned

rotating reference frame. A compatible orbit is an orbit which trajectory with respect to an

assigned rotating frame is a closed trajectory. This compatibility implies that all the spacecraft

in this rotating frame follow the same continuous closed-loop trajectory. In particular, when

the reference frame is chosen to be Earth-Centered Earth-Fixed (ECEF), then the FC space-

craft all follow the same relative trajectory, space track, in the ECEF frame and, consequently,

the same continuous closed-loop ground track. For information on Flower Constellations see

also Mortari et al. (2004b), Park et al. (2004), Park et al. (2005), Wilkins (2004a), Wilkins

et al. (2004b) and Wilkins et al. (2004c).

In general, the ground track is made of prograde and retrograde segments where the

spacecraft ground track longitude is increasing or decreasing with time, respectively. Also,

the ground track (for a compatible orbit) is a continuous closed-loop line that intersects

itself at several points. These intersections can be characterized by the angle between the

ground velocities along the two intersecting parts (see Fig. 1). When this angle is equal to π ,

then the intersecting point is a tangent intersecting point and the two intersecting parts are

one prograde and another retrograde over the intersecting point on the Earth’s surface. This

tangential relationship describes the concept of Two-Way Orbits.

Fig. 1 Ground track intersecting

angle
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Fig. 2 Two-Way Orbits example

In Two-Way Orbits the relative trajectory will have at least one tangent intersecting point.

This intersection implies that it is possible to build special Flower Constellations with one

spacecraft moving along the tangent prograde direction and another spacecraft moving along

the tangent retrograde direction. In particular, it is possible to phase the spacecraft in a way

such that they will pass over the tangent point simultaneously (see Fig. 2).

Two cases will be considered. The first is the “special” Two-Way Orbit where the tan-

gential intersection point is at the perigee of one spacecraft and the apogee of the other. The

second case is the “general” Two-Way Orbits where the tangential intersection point is any

general point on the trajectories of the two spacecraft.

In this paper, we derive conditions on the orbits’ parameters such that it constitutes a

Two-Way Orbit. The second section briefly reviews the theory of Flower Constellations. The

third section reviews the orbit compatibility conditions. In the fourth section, the case of

special Two-Way Orbits is considered. A Two-Way Orbit condition on the orbit inclination

is derived. A plot is generated relating the inclination versus the eccentricity for specified

values of the semimajor axis. The fifth section develops similar analysis for general Two-Way

Orbits. However, for the general case the solution is obtained numerically. An algorithm for

the numerical solution is presented in the sixth section. The last section considers the com-

patibility of the developed conditions with Flower Constellation theory. Results show that

the derived conditions are compatible with the FCs only in the special Two-Way Orbits.

2. Compatible orbits

Consider an Earth-Centered Earth-Fixed (ECEF) system of coordinates identified by E =
{O, êx , êy, êz}, where the origin O is at the center of the Earth, êx on the equatorial plane

at Greenwich meridian, êz is aligned with Earth’s spin axis, and êy = êz × êx to form a

right-handed reference frame.

An orbit is called compatible with respect to the Earth (Carter 1991) when the spacecraft

trajectory in E constitutes a closed-loop relative trajectory. A compatible orbit, which is often

and inappropriately called repeated ground track orbit1, is defined as the orbit whose orbital

nodal period T� (node to node) satisfies the relationship

1 Any two equatorial orbits have the same repeated ground track but, in general, they do not follow the same

relative trajectory in ECEF; that is, they are not, in general, compatible.
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Np T� = Nd T�G , (1)

where Np and Nd are two integer numbers indicating the number of orbit periods and the

number of the Earth rotational periods to repeat, and where T�G is the Greenwich nodal

period, which has been defined by Carter (1991) as

T�G =
2π

α̇⊕ − �̇
, (2)

where α̇⊕ = 7.29211585530×10
−5 rad/sec is the rotation rate of the Earth and �̇ is the nodal

regression of a satellite’s orbit plane caused by perturbations such as the Earth’s oblateness.

In particular, Tr = Np T� is the period of repetition on the relative trajectory.

(1) and (2) allow us to write

T� =

(

2π

α̇⊕ − �̇

)

Nd

Np

=

(

2π

α̇⊕ − �̇

)

ξ, (3)

where ξ = Nd/Np is the rational compatibility parameter. (3) tells us that, for every distinct

value of ξ , there is a different nodal period T�, associated with Earth’s compatible orbits.

However, this equation can also be seen from a different perspective: for a given value of ξ ,

an arbitrary orbit (with nodal period T� and nodal rate �̇) can be seen as compatible with a

fictitious Earth that rotates with angular velocity

α̇ = �̇+
2π

T�
ξ. (4)

Therefore, every orbit can be seen as compatiblewith an associated Earth-Centered Rotating

(ECR) system of coordinates that rotates at the angular velocity provided by (3). The final

result is that any Earth-compatible orbit is compatible with an infinite The compatibility

concept is a relative concept, which refers to a rotating reference frame. Thus, if we consider

a different rotating reference frame, then there will be a definition of orbit compatibilitywith

respect to this reference frame.

3. The “special” Two-Way Orbits

The condition for two satellites to have tangent ground tracks at a point is to have parallel

Earth-relative velocities at that point. The Earth-relative velocity, Ev, is the velocity of the
satellite with respect to an Earth rotating system of coordinates.

Ev = EV − EVE , (5)

where EV is the satellite velocity in Earth-Centered Inertial (ECI) reference frame and EVE

is the local geographical velocity evaluated at radius Er in ECI. The transformation matrix
between inertial and orbital reference frames is (C� ≡ cos�, S� ≡ sin�, and so on)

RT =





C�Cω − Ci S�Sω −C�Sω − Ci S�Cω Si S�
S�Cω + Ci C�Sω −S�Sω + Ci C�Cω −Si C�

SωSi CωSi Ci



 . (6)

This matrix rotates vectors from the perifocal frame (ro) to the inertial frame (ri ), and vice

versa

ri = RT ro ⇐⇒ ro = R ri . (7)
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In particular, position and velocity are transformed accordingly with

ri =
p

1+ e cosϕ







cos� cos(ω + ϕ)− sin� sin(ω + ϕ) cos i

sin� cos(ω + ϕ)+ cos� sin(ω + ϕ) cos i

sin(ω + ϕ) sin i







, (8)

while the velocity in the orbital reference frame is expressed as

vo =

√

µ

p







− sin ϕ
e + cosϕ

0







. (9)

Let us consider, for simplicity, two eccentric orbits having the apsidal lines lying on the

equatorial plane (ω = 0). Under this condition, the velocity in ECI of the first orbit at

perigee is

EVp1 = (e + 1)

√

µ

p







− sin�1 cos i

cos�1 cos i

sin i







, (10)

while at apogee of the second orbit the velocity in ECI is

EVa2 = (e − 1)

√

µ

p







− sin�2 cos i

cos�2 cos i

sin i







. (11)

The local geographical velocity is

EVE = EωE × Er , (12)

where EωE is the Earth angular velocity. Specializing (12) for orbit #1, we obtain the expres-

sion for the Earth-relative velocity at perigee

EVEp1 =







0

0

ωE







×
p

1+ e







cos�1
sin�1
0







=
p ωE

e + 1







− sin�1
cos�1
0







, (13)

while the Earth-relative velocity at apogee of orbit #2 is

EVEa2 =







0

0

ωE







×
p

1− e







− cos�2
− sin�2
0







=
p ωE

e − 1







− sin�2
cos�2
0







. (14)

Substituting (10) and (13) into (5) we obtain

Evp1 = (e + 1)

√

µ

p







− sin�1 cos i

cos�1 cos i

sin i







−
p ωE

e + 1







− sin�1
cos�1
0







(15)

and substituting (11) and (14) into (5) we obtain

Eva2 = (e − 1)

√

µ

p







− sin�2 cos i

cos�2 cos i

sin i







−
p ωE

e − 1







− sin�2
cos�2
0







. (16)

In general, in order to have tangent ground tracks at the intersection, the two velocity vec-

tors and the vector pointing at the intersection, EReq , must be linearly dependent (they identify
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the plane passing through the origin of the coordinates and containing the two velocities Evp1

and Eva2). In our case, since we are looking for tangency at the equator and at the perigee of

one orbit and the apogee of the other orbit, then our tangential condition can be substituted

with the condition for the two velocity vectors, Evp1 and Eva2), being parallel. This parallelism

implies that we can write

Eva2 = k Evp1, (17)

where k is the proportionality constant. Let va2(i) be the i th component of Eva2 and vp1(i)

be the i th component of Evp1, then from (17):

vp1(1)

−va2(1)
=

vp1(2)

−va2(2)
, (18)

vp1(1)

−va2(1)
=

vp1(3)

−va2(3)
, (19)

and

k =
va2(3)

vp1(3)
=

e − 1

e + 1
. (20)

Substituting from (15) and (16) into (18) and (19), we obtain

−Ci S�1 Vp + ωE rp S�1

Ci S�2 Va − ωE ra S�2
=

Ci C�1 Vp − ωE rp C�1

−Ci C�2 Va + ωE ra C�2
(21)

and

−Ci S�1 Vp + ωE rp S�1

Ci S�2 Va − ωE ra S�2
= −

1

k
, (22)

respectively, where

Vp = (1+ e)

√

µ

p
and Va = (1− e)

√

µ

p
(23)

represent the modulus of the velocity at perigee and apogee, respectively. The semi-latus

rectum, p, can be expressed as a function of the perigee altitude, apogee altitude, or the

semi-major axis as (Sidi 1997):

p = rp(1+ e) = ra(1− e) = a(1− e2). (24)

Substituting from (24) into (23) we obtain

Vp =

√

2µ

rp

−
µ

a
and Va =

√

2µ

ra

−
µ

a
. (25)

With little manipulation, (21) is satisfied if

sin (�1 −�2) = 0 (26)

or

Va Vp C2i − ωE Ci ( rp Va + ra Vp )+ ω
2
E rp ra = 0. (27)
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Fig. 3 Two-Way Orbits’ inclinations for different values of e and a

The latter case is refused because it does not satisfy the condition in (22). The result in (26)

states that either �1 = �2, which is a trivial case where the two orbits are identical, or

�1 −�2 = π. (28)

The latter case gives the condition on the right ascension of the ascending node for the two

orbits. The condition in (22), after manipulation, implies that

cos i =

ωE

(

rp

Vp

S�1 −
ra

Va

S�2

)

S�1 − S�2
. (29)

From (28), we have sin(�2) = − sin(�1) then (29) simplifies to

cos i =
ωE

2

(

rp

Vp

+
ra

Va

)

(30)

(28) and (30) constitute the necessary and sufficient conditions to have Two-Way Orbits.

Figure 3 shows Two-Way Orbits’ inclinations for different values of e and a. As the semi-

major axis decreases, the inclination angle increases, and vice versa, for a given eccentricity

of the orbits. For a given semi-major axis, the lower the eccentricity of the orbits, the higher

is the inclination.
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4. The “general” Two-Way Orbits

We considered the case where the two orbits have similar shape, size and inclination. More-

over, we assumed zero argument of perigee and the intersection point occurs at the perigee

and apogee points of the two orbits. In this section we look at the same problem but the

intersection point is any general point, not necessarily an apogee or perigee.

First, we find the condition of having an intersection between the two ground tracks for

two different orbits. An intersection between the ground tracks occurs if the two position

vectors of the two satellites are parallel.

Er1 = kr Er2. (31)

Substituting for the vectors Er1 and Er2 from (8) then we can get the following two conditions
for an intersection to occur

cos�1 cos(ω + ϕ1)− sin�1 sin(ω + ϕ1) cos i

cos�2 cos(ω + ϕ2)− sin�2 sin(ω + ϕ2) cos i
=
sin(ω + ϕ1)

sin(ω + ϕ2)
(32)

and

sin�1 cos(ω + ϕ1)+ cos�1 sin(ω + ϕ1) cos i

sin�2 cos(ω + ϕ2)+ cos�2 sin(ω + ϕ2) cos i
=
sin(ω + ϕ1)

sin(ω + ϕ2)
. (33)

These two conditions can be simplified to the following form
[

Ci a1 −a3
a3 Ci a1

]{

S�1
C�1

}

=

[

Ci a1 −a4
a4 Ci a1

]{

S�2
C�2

}

, (34)

where, a1 = sin(ω + ϕ1) sin(ω + ϕ2), a3 = cos(ω + ϕ1) sin(ω + ϕ2), and a4 = sin(ω +
ϕ1) cos(ω + ϕ2).

4.1. Observations

1. We notice that for the special case where a3 = a4, then either �1 = �2, which is the

obvious case, or Ci
2a1

2 + a3
2 = 0 which is satisfied only if ω + ϕ2 = nπ where,

n = 0, 1, . . . . This latter case is the special case solved in the previous section.
2. If we eliminate Ci from (34) then we get

a4S�2 − a3S�1

1C
=

a3C�1 − a4C�2

1S
, (35)

where1C = C�1−C�2 and1S = S�1− S�2. By rearrangement of (35) we can write

a4

a3
≡
tan(ω + ϕ1)

tan(ω + ϕ2)
=

C�11C + S�11S

C�21C + S�21S
. (36)

This expression can be further simplified to the form

(a3 + a4)[ cos(�1 −�2)− 1 ] = 0, (37)

which means that either �1 = �2, which is a trivial solution, or a3 = a4. The latter can

be written in the form

ω1 + ϕ1 + ω2 + ϕ2 = nπ n = 0, 1, . . . (38)

3. For the special case where �1 − �2 = π , the above equation reduces to a4/a3 = −1.
This relationshipmeans thatϕ2 = π−ϕ1, which is the special case solved in the previous
section.
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The condition in (38) implies that the two trajectories of two satellites intersect at a certain

point; however, it does not imply that both of the two satellites will pass by this point at the

same time. To guarantee that both will pass by the intersection point at the same time, we

introduce the following condition.

Assume the two satellites of interest intersect at time t = ti , and writing the time equation

for both satellites at the intersection point
(

ti − tp1

)

n = ψ1i − e sin(ψ1i ), (39)

(

ti − tp2

)

n = ψ2i − e sin(ψ2i ), (40)

where n is the mean motion. Then,

ψ2i − e sin(ψ2i ) = ψ1i − e sin(ψ1i )− n(tp2 − tp1). (41)

In order to find tp1 and tp2, we need to define the phasing between the two satellites.

Recalling that for a Flower Constellation we have two phasing conditions(Mortari et al.

2004a). The first, for a two-body problem case, is

Mk+1(0) = Mk(0)+ 2π
Fn

Fd

n

ωE

, (42)

where Fn and Fd are integers defining the phasing of the two satellites. Now if we set, with-

out loss of generality, tp1 = −M1(0)/n and tp2 = −M2(0)/n, then the condition in (41)

becomes

ψ2i − e sin(ψ2i ) = ψ1i − e sin(ψ1i )+ 2π
Fn

Fd

n

ωE

. (43)

(38) and (43) completely determine the intersection point of the two satellites.

Now, we proceed to the condition of Two-Way orbits. We proceed as in the previous sec-

tion but with general orbit parameters. Assume that the point of intersection occurs at point

1 in the first orbit corresponding to a true anomaly, ϕ1, and at point 2 in the second orbit

corresponding to a true anomaly, ϕ2. Assume also that the two orbits have common e, i , and

ω. Then it can be shown that the velocity of point 1 relative to the Earth is

EV R
1 =































√

µ

p1
(τ11τ12 + τ13τ14)+

ωE p1

1+ e cos(ϕ1)
τ15

√

µ

p1
(τ21τ12 + τ23τ14)−

ωE p1

1+ e cos(ϕ1)
τ25

√

µ

p1
Si (Sωτ12 + Cωτ14)































, (44)

where

τ11 = C�1Cω − Ci S�1Sω

τ12 = sin(ϕ1) [cos(ϕ1) (1− e)− 1]

τ13 = −C�1Sω − Ci S�1Cω

τ14 = 1− [cos(ϕ1) (1− e)− 1] cos(ϕ1)

τ15 = S�1 cos(ω + ϕ1)+ Ci C�1 sin(ω + ϕ1)

τ21 = S�1Cω + Ci C�1Sω

τ23 = −S�1Sω + Ci C�1Cω

τ25 = C�1 cos(ω + ϕ1)− Ci S�1 sin(ω + ϕ1)
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The vector EV R
2 is defined similar to EV R

1 with p2,�2 and ϕ2 replacing p1,�1 and ϕ1,

respectively.

EV R
2 =































√

µ

p2
(σ11 σ12 + σ13σ14)+

ωE p2

1+ e cos(ϕ2)
σ15

√

µ

p2
(σ21σ12 + σ23σ14)−

ωE p2

1+ e cos(ϕ2)
σ25

√

µ

p2
Si (Sωσ12 + Cωσ14)































, (45)

where σi j corresponds to τi j .

The condition for having Two-Way orbits is that the vectors EV R
1 ,
EV R
2 and the position vec-

tor of the intersection point, Eri , belong to the same plane. Then we can write this condition

as follows:

χ = Eri ·
(

EV R
1 × EV R

2

)

= 0. (46)

It is difficult to derive analytically an expression that gives the inclination of such orbits;

however a numerical solution is developed.

5. Numerical solution algorithm

It is possible to introduce a numerical algorithm to find the intersection point of two satellites

and the condition of the two orbits such that they constitute a Two-Way Orbit. This algorithm

involves two consecutive steps: determining the intersection point and determining the orbit

inclination.

5.1. Determine the intersection point

(38) and (43) can be solved numerically to find ϕ1 and ϕ2 as follows:

1. Assume a value for ϕ1.

2. Get the corresponding ψ1
3. Given the phasing parameters, Fn and Fd , evaluate ψ2 using (43).

4. Evaluate the corresponding ϕ2.

5. Check if ϕ1 and ϕ2 satisfy (38). If not, then repeat from step no. 1.

This algorithm will result in the values of ϕ1 and ϕ2 at the intersection point given the

orbital shape, a, e, and ω.

5.2. Determine the orbit inclination

In this step, we use the Two-Way Orbit condition, (46), to find the orbit inclination. Given

�1, �2 can be calculated as follows:

�2 = �1 − 2π
Fn

Fd
. (47)

We then loop on all possible values of the inclination, and each time we check if the derived

condition in (46)is satisfied or not. This step will result in all possible values for the incli-

nation, i , completing the five orbital elements. There are many parameters that vary in the

algorithm. One case is plotted in Fig. 4 and 5where Fn = 1 and Fd = 4. The condition χ = 0
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Fig. 4 General Two-Way Orbit: eccentricity vs. inclinations for different values of a
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satisfaction is investigated and the variation of χ with different values for the eccentricity is

plotted in Fig. 5.

For a Flower Constellation we have two phasing conditions. The first is used in calculating

the intersection point as discussed above. The second is used to calculate�2, (47) [So all the

calculated satellites constitute a Flower Constellation.].

6. Conclusions

In this paper, the concept of Two-Way Orbits is investigated. The special case of two com-

patible orbits with a relative trajectory that intersects itself at the perigee of one orbit and the

apogee of the other orbit is solved analytically. The general case of the two compatible orbits

with a relative trajectory intersecting at two general points on their orbits with tangent ground

tracks is formulated and solved numerically. The case of two satellites in a Flower Constel-

lation is investigated and results demonstrated the possible existence of general Two-Way

Orbits in Flower Constellation set.
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