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Space Surveillance with Star Trackers.
Part II: Orbit Estimation∗
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Abstract

The problem of estimating the orbit of a space object using observed star

tracker measurements, is addressed. Star trackers can provide azimuth and

elevation measurements of a space object which are used to estimate the

orbit of the object, assuming that the orbital and attitude motion models are

known. The system observability is investigated. Both, batched least square

and Kalman filter techniques, are implemented. Results show that the orbit

parameters of the observed object can be estimated if the measurements time

span is in the order of 20% of the orbital period.

1 Introduction

The ability to know precisely where a space object is orbiting the Earth is critical
to mission planners for reaching science objectives as well as avoiding catastrophic
collisions with other space objects or space debris. Currently, tracking information is
provided by a number of facilities around the world including NASA’s Satellite Laser
Ranging (SLR) stations, the U.S. Air Force Space Surveillance Network, the U.S. High
Accuracy Network Determination System (HANDS), the U.S. Navy Interferometer
Fence, the Russian Space Surveillance System, the French Doppler Orbitography and
Radio Position Integrated by Satellite system, as well as the U.S. Global Positioning
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System. The SLR stations provide some of the most accurate data that is often used
to define “truth” orbits; however, its use is primarily limited to those space objects
equipped with retro-reflectors.

Star trackers are the most accurate attitude sensors on board satellites. The main use
is to accurately evaluate the spacecraft orientation with respect to the Earth Centered
Inertial (ECI) reference frame, where usually the star catalog are provided. This is
done by taking advantage from the invariance of the inter-star angles with respect
to rotation and translation. However, due to the Sun reflectivity flying satellites can
also be observed. Because of this, and because of the recent space threats increase,
the idea of using the existing star trackers sensors to perform Space Surveillance, has
been recently proposed and here investigated.

This paper proposes a novel method for estimating the orbit of a space object using
star tracker measurements. Wide field-of-view star trackers along with a modified
version of the “Pyramid” star identification algorithm[1] - “Pyramid-II” - provide
angular measurements for the position of a space object in the field of view. “Pyramid-
II” uses all the star-like objects appearing in the sensor field of view. Objects that
are identified as belonging to the star catalog are then used for precision attitude
estimation. As for the other star-like observations (unidentified space objects), which
up to now have been simply discarded by standard star trackers data processing
software, they are treated as regular stars, evaluating azimuth and elevation angles
in the satellite’s body frame. These measurements collected over a time span can
provide enough information to estimate the orbit of the space object, assuming the
model for its motion is known.

State of the art star trackers are today capable of taking measurements at frequencies
approaching 100 Hz, hence, producing extremely dense short-arc in situ surveillance
data of space objects within their field of view.

Since only azimuth and elevation angles are measured, the observability of the system
is first investigated to check the possibility of estimating the system states from these
measurements. Results of the observability investigation shows the possibility of
estimating the space object given a minimum of time span for the measurements.
Two methods are used for estimation, a batched least square differential correction

and an iterated Kalman filter approaches.

In the following sections, the observability of the system is first investigated to check
the possibility of estimating the system states from the measurements. For estimation
purposes, the model of the system is here introduced and an analytical expression for
the Jacobian matrix is derived. The Gaussian Least Squares Differential Correction
(GLSDC) technique is implemented and results are presented.



2 Observability Investigation

In this section, the system observability is investigated to see whether the states
of the system are independently observable from the measurements or not. For a
linear system, this can be done by calculating the observability matrix and checking
if it can be inverted or not. If it can be inverted, then all the states are observable
from the measurements of the system [2]. For a nonlinear system, however, it is not
that straight forward. The Newtonian gravitational attraction model is nonlinear.
Even, if we assume small relative distance between the two spacecraft and use Hills
equations as a model for the relative motion, the states equations are linear but the
measurement is a nonlinear function of the states. Two cases will be considered
to check the observability, the Hills equations model and the Newtonian attraction
model.

2.1 Observability of the Nonlinear Model

In this nonlinear model, the system states are the object orbital elements and the
true anomaly at the first measurement. The measurements are a series of directions
from the observing spacecraft to the object spacecraft. The observability of the state
vector from the measurements can be investigated by perturbing each of the states
and check the resulting perturbation in the measured quantity [3]. If a perturbation
of each of the states results in independent perturbation responses in the measured
quantity, then all the states can be estimated from the measured quantity.

Each of the orbital elements for the object orbit is perturbed. These perturbations
result in a corresponding perturbation in the vector of object position relative to
the observing spacecraft position. The relative position vector can be seen as two
separate quantities, magnitude, and direction. We are only concerned about the
direction because this is the quantity that we can measure.

As a case study, it is assumed that the two spacecraft are moving in the same orbit
with small eccentricity of 0.005 and an altitude of 550 Km. The observed object
A is leading the observing spacecraft B. Figures 1-5 show the perturbation in the
relative position distance and direction due to states perturbations. The direction is
measured w.r.t. an inertial fixed axis.

As can be seen from Fig. 1, positive perturbation in the true anomaly at epoch
results in constant positive perturbation in the direction of the relative position vector,
ψAB. A negative perturbation causes also a negative constant perturbation in ψAB.
Eccentricity perturbation causes harmonic perturbation in ψAB, as shown in Fig 2.
Positive and negative eccentricity perturbations can be distinguished from each other
from the phase difference in the perturbed ψAB. Since eccentricity perturbations
cause harmonic ψAB perturbations compared to a constant perturbation for the case
of the true anomaly at epoch, then these two states can distinguished from each other
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Figure 1: Perturbations of range and angle caused by perturbation of the mean
anomaly at epoch

based on the measured ψAB. Considering Fig. 3, any perturbation in the semi major
axis will cause the two spacecraft to orbit the Earth with different orbital period.
This will result in ψAB changing as a ramp or even faster. Positive and negative
perturbations in a, or equivalently in n, are distinguishable from each other based on
the sign of the perturbed ψAB. Both are distinguishable from previous states because
of the ramp nature of the ψAB response.

The orbit plane observability can be investigated geometrically as follows. First, con-
sider the case of the two spacecraft are in the same plane. Then all the measured
directions of the target spacecraft will be in the same plane. So, if all the measured
directions are normal to the known observer plane normal vector, then the target
spacecraft is in the observer plane. For the case of the two spacecraft are not in the
same plane, consider the intersection point of the two orbits. The observer space-
craft orbit normal is known. The unit vector from the observer to the target at the
intersection point is in the observer plane. So it is normal to the known observer
plane normal vector. This means that the intersection points can be determined from
the measurements: If the target direction is in the observer plane, then the target
is at the intersection point at this time. Given the intersection points of the two
orbits, and the plane of one of them, the plane of the second orbit cab be calculated
geometrically.



0 1000 2000 3000 4000 5000 6000
−3000

−2000

−1000

0

1000

2000

3000

Effect of ∆ e
A
 on the perturbation time histories ∆ ρ

BA
 and ∆ ψ

BA

Time (sec)

∆
ρ
(m

)

∆ e
A
 = 1.3e−6

∆ e
A
 =  1.7e−4

0 1000 2000 3000 4000 5000 6000
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

∆
ψ

 (
d

e
g

)

∆ e
A
 = −1.7e−4

∆ e
A
 =  1.7e−4

Figure 2: Range and angle variations due to eccentricity perturbation

From the above discussion, it can be concluded that all states can be estimated
given a history of measurements. However, of importance is the duration of these
measurements. Looking again at the previous figures, one can recognize that a short
history of measurements, say 1000 seconds, may not tell whether the perturbed ψAB

is, in this short period, a part of a ramp or a harmonic wave or even a constant with
some noise added to it. It is concluded from that the measurements history should
cover enough time to distinguish between different behaviors in the measured ψAB.
This measurements period will depend on the two orbits of the two spacecrafts and
some special cases may have special requirements. From the case studied above, one
may conclude that a safe period of time is half the orbital period, or little less than
that. As a demonstration for this concluded results; a GLSDC technique is used to
estimate the states of a space object and the measurements are assumed ideal with no
errors. Several cases are considered for different measurements duration period to see
after how long measurements period can the estimator reach the true values. Consider
the case of a LEO with eccentricity of 0.05, hp = 300 Km, and inclination of 95◦.
Assume that the observing spacecraft is flying in an orbit with the same parameters
but circular. Results are shown in Figs. 6-8. Figure 6 shows that the semi major
length and eccentricity could not be estimated accurately after 20 minutes of time
span. Even if we increase the number of measurements, 140 compared to 40 in the
previous case, but still within the 20 minutes time span, we cannot estimate the true
values, Fig. 7. However, if time span is increased to half of the orbital period, we get
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Figure 3: Perturbations of range and angle caused by perturbation of the semi-major
axis

the true values as shown in Fig. 8. Reasonable measurements rate is still needed to
accurately detect the harmonic behaviors in the measurements.

2.2 Observability of the Linear States Model

If the distance between the two spacecraft is small compared to the orbit size, and
the orbit of the spacecraft is near circular, then the linear Hills equations [4] can be
used to represent the relative motion of the two spacecraft





fx = ẍ− 2ωẏ − 3ω2x
fy = ÿ + 2ωẋ
fz = z̈ + ω2z

(1)

where x, y, and z, are the three components of the object relative position w.r.t the
observing spacecraft in the later’s coordinate system. fx, fy, and fz are the external
forces applied to the object spacecraft. For the purpose of observability analysis,
consider the solution of the above equations in the case of zero external forces [5]
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Figure 4: Perturbations of range and angle caused by perturbation of inclination

which can be written in a compact form as





x(t) = f1(x0, ẋ0, y0, ẏ0, t)
y(t) = f2(x0, ẋ0, y0, ẏ0, t)
z(t) = f3(z0, ż0, t)

(2)

The states that need to be estimated are the initial conditions: x0, ẋ0, y0, ẏ0, z0, and
ż0. The measurement is the direction of the object spacecraft which can be considered
as a unit vector in the direction of the object. So, a measurement mk at time tk is

mk =
1√

f 2

1k + f 2

2k + f 2

3k






f1k

f2k

f3k




 (3)

where, fik is the function fi evaluated at time tk.

Given one measurement vector, Eq. (3) will give you three equations in six un-
knowns. Given two measurements, then we will have six equations in six unknowns.
This set of nonlinear equations may have a single solution or multiple solutions. Ad-
ditional measurements can be used to solve the ambiguities in the solution. So, from
a mathematical point of view, This linear model is observable if we have two or more
measurements.
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Figure 5: Perturbations of angle caused by perturbation of ΩA

3 Gaussian Least Squares Differential Correction

The state variable vector x is selected to be

x = { a, e, i, ω, Ω, φ0 }T (4)

where φ0 is the true anomaly of the first measurement. The position of the object is
ro. The position of the star tracker is rs. The position of the object with respect to
the star tracker is ro/s. See Fig. 9 for geometry of the space surveillance problem.
The model for m measurements,ỹj , is

yj = fj(x), j = 1 . . .m (5)

f =
ro/s

ρ
, ρ = ‖ro/s‖ (6)

So, Given a set of measurements ỹ, it is required to find the state vector x. The
motion of the object is assumed to follow a Keplarian orbit. The method of GLSDC
is implemented.

The least squared error cost function

J =
1

2
eTW e =

1

2
[ ỹ − ŷ ]TW [ ỹ − ŷ ], (7)
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Figure 6: Time span = 20 min. No. of measurements = 40
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Figure 7: Time span = 20 min. No. of measurements = 140
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Figure 8: Time span = 50 min. No. of measurements = 140

is minimized by repeated state updates of the form

∆x = (HTW H)−1HTW [ ỹ− f(x̂i) ] (8)

where x̂i is the current estimate of the state, H =
∂f

∂x

∣∣∣∣
xi

is the Jacobian matrix, W is

the weighting matrix, and (HTW H)−1 is the auto-correlation matrix. If the weight-
ing matrix is the inverse of the measurement variances, then the auto-correlation
matrix becomes the error covariance.

4 Jacobian Matrix Derivation

The jacobian matrix, H , is by definition

H =
∂f

∂x
(9)

Differentiating Eq. (6)

ρ
∂f

∂x
+ f

∂ρ

∂x

T

=
∂ro/s

∂x
(10)

where
ρ2 = (ro/s)

Tro/s (11)



Figure 9: Geomtery for space surveillance

∂ρ

∂x
=

1

ρ

(
∂ro/s

∂x

)
T

ro/s (12)

So, to evaluate H , we need only to calculate
∂ro/s

∂x
. In fact, since rs is not a function

of x, then
∂ro/s

∂x
=
∂ro

∂x
(13)

The inertial position of the object at time tj at which the measurement j was taken
can be expressed as a function of the six orbital elements as follows [6]

(ro)j = ξ(i,Ω, ω)





a (cosψj − e)

a
√

1− e2 sinψj

0



 (14)

where
ξ(i,Ω, ω) = AT

z (Ω)AT

x(i)AT

z (ω) (15)

and

Az(Ω/ω) =




cos Ω/ω sin Ω/ω 0
− sin Ω/ω cos Ω/ω 0

0 0 1


 , Ax(i) =




1 0 0
0 cos i sin i
0 − sin i cos i


 (16)

Differentiating Eq. (14) w.r.t. each of the six elements of x

∂(ro)j

∂a
= ξ(i,Ω, ω)





cosψj − e√
1− e2 sinψj

0



 (17)



∂(ro)j

∂e
= ξ(i,Ω, ω)





−a
−ae sinψj√

1− e2

0





(18)

∂(ro)j

∂i
=
∂ξ

∂i






a (cosψj − e)

a
√

1− e2 sinψj

0




 (19)

∂(ro)j

∂ω
=
∂ξ

∂ω






a (cosψj − e)

a
√

1− e2 sinψj

0




 (20)

∂(ro)j

∂Ω
=
∂ξ

∂Ω






a (cosψj − e)

a
√

1− e2 sinψj

0




 (21)

where
∂ξ

∂Ω
=
∂AT

z (Ω)

∂Ω
AT

x(i)AT

z (ω) (22)

∂ξ

∂ω
= AT

z (Ω)AT

x(i)
∂AT

z (ω)

∂ω
(23)

∂ξ

∂Ω
= AT

z (Ω)
∂AT

x(i)

∂Ω
AT

z (ω) (24)

and

∂AT

z (ω)

∂ω
=



− sinω − cosω 0
cosω − sinω 0

0 0 1


 , ∂AT

x(i)

∂i
=




1 0 0
0 − sin i − cos i
0 cos i − sin i


 (25)

The derivative of (ro)j w.r.t. the true anomaly at the first measurement can be
evaluated as follows

∂(ro)j

∂φ0

=
∂(ro)j

∂ψj

∂ψj

∂ψ0

∂ψ0

∂φ0

(26)

To calculate these derivatives, recall that

tan

(
ψ0

2

)
=

√
1− e

1 + e
tan

(
φ0

2

)
(27)

differentiating this equation, then

∂ψ0

∂φ0

=

√
1− e

1 + e

sec2

(
φ0

2

)

sec2

(
ψ0

2

) (28)

Recall also that
n(t1 − tp) = ψ0 − e sinψ0 (29)



n(tj − tp) = ψj − e sinψj (30)

Subtracting Eq. (29) from Eq. (30), then

ψj − e sinψj − ψ0 + e sinψ0 = n(tj − t1) (31)

Differentiating Eq. (31) w.r.t. ψ0 and taking into account that the difference in time
between the two measurements, tj − t1, does not depend on ψ0

∂ψj

∂ψ0

=
1− e cosψ0

1− e cosψj

(32)

Differentiating Eq. (14) w.r.t. ψj

∂(ro)j

∂ψj
= ξ(i,Ω, ω)





−a sinψj

a
√

1− e2 cosψj

0



 (33)

Combining Eqs. (32), (33), and (28), we obtain

∂(ro)j

∂ψ0

= ξ(i,Ω, ω)






−a sinψj

a
√

1− e2 cosψj

0





1− e cosψ0

1− e cosψj

√
1− e

1 + e

sec2

(
φ0

2

)

sec2

(
ψ0

2

) (34)

Equations (17-21) and Eq. (34) construct
∂ro

∂x
. The last in turn is substituted into

Eqs. (13), (12), and (10), to find H .

5 Results and Discussion

The above formulation is coded and the results show that this algorithm does not
converge. The condition number for the matrix (HTH) starts in the first iteration
with a value in the order of 108 and rapidly increases as the number of iterations
increase.

A small modification to the above formulation is done to try to get it to converge.
The measurements vector is enhanced with an estimated value for the range of the
object spacecraft. A virtual measurement vector is assumed to be the object inertial
vector. This virtual measurements vector is calculated from the actual measurements
vector as follows

(ro)j = (rs)j + (ro/s)j = (rs)j + ρjyj j = 1, . . . , m (35)

The length ρj in Eq. (35) is calculated based on the current estimate for the state
vector x. This enhances the previous model with more information, the range of the



object spacecraft from the star tracker. However, this information is based on an
estimate not actual measurements. The Jacobian matrix, H , is slightly modified. It

is in this case, H =
∂ro

∂x
. This modified algorithm converges.

It is possible to show that the above modified algorithm converges to the same solution
of the original algorithm. The solution state vector x̂ is the minimizing state vector
for the cost function

J =
1

2
eTW e (36)

where the residual error vector, e, is the difference between the measurements vector
and its model

e = ỹ− f(x̂) (37)

The new measurement vector can be written as

ỹ′ = { ỹT r }T (38)

where r̂ is an estimate for the range of the object spacecraft. The the new residual
error vector is

e′ = { eT 0 }T (39)

The new cost function is then

J ′ =
1

2
e′

T

W e′ =
1

2
eTW e = J (40)

So, the two algorithms actually search for the same minimum for the same cost
function. The solution provided by this algorithm is described and analyzed through
the discussion of the following figures. The figures below show the convergence history
and the number of iterations required for convergence. The true values of the states
are plotted as horizontal lines in figures.

The first case presented is a case with 2, 000 measurements, collected 5 times per
second. This is about 7 minutes of spacecraft flight. The results are shown in Fig. 10.
The results show convergence to the true values. This can lead to the conclusion that
with more iterations, a good estimate can be achieved. The drawback is the running
time; with this big number of measurements, 2, 000 measurements, the Jacobian
matrix becomes very big.

As shown earlier in the observability investigation section, for better estimation re-
sults, the total time span of observations should be increased. So, the number of
measurements is reduced to be only 70 and the time between measurements is in-
creased to be 33 seconds. The measurements duration is then about 39 minutes of
observations. This resulted in decreasing the running time significantly since the
number of measurements is much smaller. The results of this case are shown in Fig.
11 and Fig. 12. Figure 11 shows a good convergence to the true values. The incli-
nation of the orbit is almost exactly correct. Other states converge to a steady state
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Figure 10: GLSDC, measurements collected 5 times/second

value that is biased from the true value. For the purpose of analysis, the same case is
run again but this time with ideal measurements. The only error is the initial guess.
Results of this run are shown in Fig. 12. All states almost converges very close to
the true values. It can be concluded that the biased estimate of the states is due to
the model of measurements errors.

To check how small the time span can be, the case of 15 minutes of measurements
duration is considered. Several runs are performed and the results showed instability
in the solution depending on the number of measurements and on the measurements
errors. As a result, with only 15 minutes of measurements, sometimes we can get a
convergence and some times not. One example of a case that converged is shown in
Fig. 13. If we increase the time of measurements duration to 20 minutes which is
about 20% of the true orbital period, the algorithm will converge independent from
the number of measurements.

Two cases are plotted for a number of measurements of 40 and 100. All converged to a
close value to the true states. The condition number history for the matrix (HTW H)
is plotted. It is always below the order of 1010. As the number of measurements
increase, a better accuracy is achieved. This can be figured out by comparing Fig.
14 and Fig. 15. The error in the measurements is assumed to be Gaussian with a
maximum of 1 km in each coordinate direction.
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Figure 11: Measurements collected 2 times/min. for 39 minutes

6 Iterated Kalman Filter

In this section the extended Kalman filter technique [7] is implemented for estimation.
The state vector is chosen to be the initial position and velocity vectors. The truth
model used is

r̈ = − µ

‖ r(t)3 ‖ r(t) + w(t) (41)

w(t) is the process noise, which is assumed to be zero. The Extended Kalman Filter
converges much faster than the least square technique implemented in the previous
section. The extended Kalman filter is used to process data forward with guessed
initial conditions, and then process the data backward. Initial conditions for the
backward pass are the final states of the forward pass. Each iteration consists of a
forward and a backward pass. Figure 16 shows the estimated initial position and
velocity using the iterated Kalman filter.

7 Conclusions

The orbit of a space target can be estimated using the measurements of a star tracker.
An important factor is how long is the time span in which the measurements are
taken. Initial analysis performed in this study shows that the orbit parameters can
be estimated if the measurements cover a time span of the order of 10% to 20% of the
orbital period, depending on the target orbit. The target orbit plane however can be
estimated in much less time span, which is in the order of 5% to 10% of the orbital
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Figure 12: Measurements collected 2 times/min. for 39 min., initial error only

period.
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Figure 13: Measurements duration = 15 min. No. of measurements = 40

0 50 100
0.5

1

1.5

2

2.5
x 10

4 a − Km

iterations

0 50 100
0

0.2

0.4

0.6

0.8
e

iterations

0 50 100
92

94

96

98

100

102
inclination − deg

iterations

0 50 100
−40

−20

0

20

40

60

ω − deg

iterations

0 50 100
−40

−30

−20

−10

0

10

20

Ω − deg

iterations

0 50 100
0

20

40

60

80

100

φ
0
 − deg

iterations

0 50 100
0

1

2

3

4

5

6

7
x 10

10Condition No.

iterations

0 50 100
0

2

4

6

8
x 10

8 J

iterations

Figure 14: Measurements duration = 20 min. No. of measurements = 40
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Figure 15: Measurements duration = 20 min. No. of measurements = 100
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Figure 16: Iterated Kalman filter, time span=10 min, No. of measurements=11


