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Introduction

T HE orbit transfer problems using impulsive thrusters have
attracted researchers for a long time [1]. One of the objectives in

these problems is to find the optimal fuel orbit transfer between two
orbits, generally inclined eccentric orbits. The optimal two-impulse
orbit transfer problem poses multiple local optima, and classical
optimization methods find only local optimum solution. McCue [2]
solved the problem of optimal two-impulse orbit transfer using a
combination between numerical search and steepest descent
optimization procedures. Jezewaski and Rozendall [3] developed an
iterative method to calculate local minima solutions for the n-
impulse fixed time rendezvous problems. Genetic algorithms (GAs)
have been used in the literature to search for the global optimal orbit
maneuver. Reichert [4] addressed the optimum two-impulse orbit
transfer problem for coplanar orbits only. The accuracy obtained
using this formulation is not good unless a narrow range, around the
optimal value, for each design variable is known in advance [4].
Given narrow ranges for the design variables, the solution obtained
using this formulation does not guarantee that the satellite will be
inserted exactly into final orbit, but rather there is a small error unless
the GA finds exactly the global optimal solution. Kim and Spencer
[5] introduced a different formulation to the two-impulse orbit
transfer problem by using six design variables for coplanar orbits.
This formulation also does not guarantee the satellite is placed
exactly in the final orbit.
In this note, a new formulation to the problem is introduced. This

formulation is general for noncoplanar elliptical orbits. It can also
implement any number of thrust impulses. For the case of two-
impulse maneuver, this formulation requires only three design
variables for any noncoplanar orbit transfer. The solution obtained
by this formulation is guaranteed to insert the satellite in the final
orbit exactly, even if the GAs did not converge to the global optimal

solution. This formulation requires solving Lambert’s problem to
find the parameters of the transfer orbit for a given set of the three
design variables. The next section describes the orbit maneuver
algorithm. The two-impulse transfer is considered a special case
and is presented separately. Validation to this formulation is
performed by solving several case studies to which the optimal
solution is known.

Problem Formulation

Two-Impulse Maneuver

Consider a satellite in an initial orbit defined by the five orbital
elements aI , eI , iI , !I , and  I . The final orbit is defined by the five
orbital elements: aF eF iF !F, and  F. Assume that the satellite is
subject only to the Newtonian gravitational force. The true anomaly
on the initial orbit at the time of satellite departure from the initial
orbit is �I . The true anomaly on the final orbit at the time of satellite
arrival to the final orbit is �F. The position and velocity of the satellite
on the initial orbit at the time of departure are rI and vI , respectively.
The position and velocity of the satellite on the final orbit at the time
of arrival are rF and vF, respectively. The geometry for the orbit
transfer is shown in Fig. 1.
The objective function that will be minimized is selected to be the

total cost of the maneuver, which is the sum of the initial and final
impulses

f�
X

k!vk � kvI  vItk � kvF  vFtk (1)

The design variables are selected to be �I , �F, and the time offlight on
the transfer orbit from the initial position to the final position, tf. It is
required to find the optimal values for the design variables that
minimize the objective function. A genetic algorithm requires the
evaluation of the objective function based on given values for the
design variables. This can be done as follows [6]. The initial orbit is
known, and for a given value of the design variable �I , the position of
the satellite on the initial orbit is completely defined by the six orbital
elements. From the six orbital elements, the position rI , and the
velocity vI , of the spacecraft on the initial orbit at the first impulse
location are computed [7]. Similarly, the final orbit is known, and for
a given value of �F, rF, and vF of the spacecraft on thefinal orbit at the
second impulse location are computed. For a given value for the
design variable tf, and the calculated values for rI , rF, we can solve
the Lambert’s orbital two point boundary value problem [8] to
calculate the orbital elements of the transfer orbit. From the transfer
orbit parameters, we can calculate the velocities on the transfer orbit
at the initial and final positions, vIt and vFt, respectively. The required
!v, for the given set of design variables, is then calculated from
Eq. (1).
In the case in which the transfer angle between the initial position

and the final position is � or 2�, then the preceding design variables
do not completely specify a solution. In this case, and if the initial and
final orbits planes are coplanar, then the designer should select the
transfer orbit plane as the same plane of the initial and final orbits. If
the initial and final orbits are not coplanar, then additional variable(s)
should be added to completely specify the transfer plane. This special
case is not considered in this note.
After we get the solution of the GA, we can apply a steepest

descent algorithm using the GA solution as an initial guess. This will
guarantee the final solution is at a local optima.
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N-Impulse Maneuver

In an n-impulse orbit transfer, the number of transfer orbits is
n  1 where n is the number of impulses. For the last two impulses,
the design variables are selected exactly like the two-impulse case
presented in the preceding section: the true anomaly on orbit n  1 at
the n  1 impulse, the true anomaly on the final orbit at the last
impulse n, and the time of flight on the last transfer orbit, tf . For
impulses before the last two, the design variables are selected to be
the velocity impulse vector, and the true anomaly on the departing
orbit for that impulse. Therefore, the total design variables are 1) all
the velocity impulses vectors except the last two; 2)!vi for impulse
i, where i� 1; � � � ; n  2; 3) �i, the true anomaly on orbit i for the ith
impulse, where i� 1; � � � ; n  1;4) �F, the true anomaly on the final
orbit for the final impulse; and 5) tf, the time of flight on the last
transfer orbit. The number of design variables is then
4 � �n  2� � 3. Consider, for example, the case of the three-
impulse maneuver illustrated in Fig. 2. The design variables are the
first impulse !v1, the true anomaly on the initial orbit for the first
impulse �1, the true anomaly for the second impulse on orbit 2, �2, the
true anomaly for the last impulse on the final orbit, �F, and the time of
flight on orbit 3, tf.
The objective function is the total cost of the maneuver, which is

the sum of all thrust impulses

f�
Xn

1

k!vik (2)

For a given design point,!vi for i� 1; � � � ; n  2 are simply design
variables and no calculations are needed to include them in the
objective function. The last two impulses, however, are not design

variables and are calculated in a way similar to that used in the two-
impulse objective function evaluation. To evaluate the last two
impulses, we need to calculate the orbit n  1. In a general n-impulse
orbit transfer, this is done by starting from the initial orbit, and given
!v1 and �1, we calculate r1 and vIt, and use them to evaluate the
orbital elements of the transfer orbit 2. Given �2, we calculate r2 and
v2t, and use them to evaluate the orbital elements of the transfer
orbit 3.We continue until we evaluate the orbit elements for the orbit
n  1. Finally, we use the orbit elements of orbit n  1, �n 1, �F, tf ,
and the orbit elements of the final orbit n� 1 to evaluate!vn 1 and
!vn by solving Lambert’s problem, as done in the two-impulse
transfer case.

Results

For the purpose of validation, the developed algorithm is applied
to known problems and results are compared with the known
solutions. More case studies are available in [6].

Problem 1: The Hohmann Transfer

In the Hohmann transfer maneuver, both initial and final orbits are
circular. The optimal solution to the Hohmann transfer problem is a
two-impulse maneuver. It is characterized by the point of departure
from the initial orbit, the point of arrival on the final orbit, and the
center of the central body are all aligned. This can be written as
�F � �I � �. As a case study, consider the transfer from a circular
Mars orbit of radius 8000 km to a circular Mars orbit of radius
15,000 km. The optimal solution is the Hohmann transfer with a
required total velocity change of 0:609 km=s. The time required for
transfer is 5.08 h [9].
The solution provided by the GA is shown in Figs. 3 and 4.

Figure 3 shows a plot for the transfer orbit. The aforementioned three
points are almost aligned, which implies that this is the optimal
solution. Figure 4 shows the number of iterations and the final values
for �I , �F, and tf, and their occurrences in the final generation. In
Fig. 4, M1 is �I and M2 is �F. The required total velocity change is
0:60928 km=s. The error is 0.045%. The true anomaly at departure is
127.85 deg. The true anomaly at arrival is 306.73 deg. The difference
between them is 178.88 deg, compared with the exact optimal value
of 180 deg. The calculated transfer time is 5.157 h, comparedwith the
exact optimal value of 5.08 h. The satellite is transferred exactly to
the final orbit with no error. The slight drift from the optimal solution
appears as a slightly higher transfer time and, consequently, a slightly
higher total!v. The method converged to the optimal solution after
about five iterations.

Problem 2: Transfer from Parking Orbit to Geosynchronous Orbit

Consider the case of transferring a spacecraft from a circular Earth
parking orbit of radius 6671.53 km and inclination of 28.5 deg, to a

Fig. 1 Geometry for orbit transfer.

Fig. 2 Three-impulse orbit transfer geometry. Fig. 3 Solution orbit of the Hohmann transfer problem using GA.
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geostationary orbit (GEO) of radius 26,558.56 km and zero
inclination. The optimal solution is to perform a small inclination
change along with the orbit raising at the first impulse and then
performmost of the orbit inclination along with the circularization in
the second impulse [7].
The results are summarized in Table 1. The amount of inclination

change performed at the initial impulse is !iI. The amount of

inclination change performed at the final impulse is !iF. The total
cost of the maneuver is !v. Solution 1 is the optimal solution as
presented by Vallado [7]. Solution 2 is the final solution as obtained
by the developed tool after we find the local minima close to the GA
solution. Solution 3 is the solution obtained directly from the GA.
The final solution obtained by the developed GA tool is almost
identical to the optimal solution.

Problem 3: Three-Impulse Orbit Transfer

To demonstrate the efficiency of the method in an n-impulse orbit
transfer case, the case of the three-impulse transfer is considered. The
problem solved here is the same problem addressed by Kim and
Spencer [5]. The initial orbit is a circular orbit of radius 7000 km. The
final orbit is also circular and its radius is 42,164 km. The two orbits
are coplanar. The solution obtained by Kim and Spencer [5] has a

Fig. 4 The Hohmann transfer solution: a) cost function convergence vs generations, histogram in the last population of the design variables;
b) departure true anomaly; c) arrival true anomaly; and d) time of flight.

Table 1 Minimum plane changes and k�vk for a low earth orbit to

GEO transfer

Solution !iI !iF k!vk, km=s

1 3.305 deg 25.195 deg 4.05897
2 3.244 deg 25.256 deg 4.0590
3 3.3003 deg 25.2574 deg 4.0610
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Fig. 5 Three-impulse orbit transfer solution.
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total !v of 4:549 km=s. The solution obtained using the developed
method has a total !v of 3:87 km=s. The solution is presented in
Fig. 5 and the three velocity impulses are shown in Table 2.

Discussion

The formulation for the orbit transfer problem has the following
advantages. First, it is guaranteed to insert the spacecraft in the final
orbit exactly even if the transfer is not optimal. A nonoptimality in a
solution will appear asmore required fuel and longermaneuver time.
The reason relies on the fact that for each member in the population,
the Lambert’s problem is solved. The solution of the Lambert’s
problem yields the exact orbit transfer from the member’s initial
position to its final position during its assigned time of flight. And so,
the most fit member in the last generation, which is the solution
provided by theGA, will exactly arrive in the final orbit with no error
in position.
Second, the number of design variables is only three in the two-

impulse transfers, even for the case of noncoplanar elliptical initial
and final orbits. This is compared with six design variables in
coplanar orbits and eight design variables in noncoplanar orbits in the
formulation introduced by Kim and Spencer [5] and compared with
three design variables in only coplanar orbits in the formulation
introduced by Reichert [4]. Because of the lower number of design
variables, the running time for this algorithm is relatively small. This
small running time allows for more exploration for the design space.
In implementing a GA, it is required to compromise between
exploitation of the most fit members and exploration for the design
space. Exploitation causes a fast convergence to a solution; however,
some regions in the design space may not be investigated, and the
optimal solution could be in these regions. Exploration is slower in
finding the final solution but has more probability to hit the true
optimal solution. Usually a tradeoff between exploitation and
exploration is tailored for each problem. In the orbital maneuver

problem, and because of the smaller number of variables and fast
running time, it is possible to give more time for exploring new
solutions and so increase the probability of hitting the true optimal
solution.

Conclusions

The developed algorithm demonstrated fast convergence to
almost global optimal solutions for all the examples presented in the
note. The method is efficient and transfers the spacecraft exactly to
the final orbit even if the solution is not exactly the global optimal.
Only three design variables are needed for a general transfer between
two noncoplanar conic orbits.
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Table 2 Three-impulse orbit transfer solution k�vk

Burn k!vk, km=s �, deg

First 2.3303 315.6
Second 1.4196 186.1
Third 0.1210 60.4
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