IL-1 and **iNOS** gene expression and NO synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains

T. Gupta Ph.D., Research Assistant in Mechanical Engineering, B. Zielinska Ph.D., Research Assistant in Mechanical Engineering, J. McHenry M.S., Research Assistant in Mechanical Engineering, M. Kadmiel M.S., Laboratory Assistant and T.L. Haut Donahue Ph.D., Associate Professor of Mechanical Engineering

Abstract

Objective

Partial meniscectomy is known to cause osteoarthritis (OA) of the underlying cartilage as well as alter the load on the remaining meniscus. Removal of 30–60% of the medial meniscus increases compressive strains from a maximum of approximately 10% to almost 20%. The goal of this study is to determine if meniscal cells produce catabolic molecules in response to the altered loading that results from a partial meniscectomy.

Method

Relative changes in gene expression of *interleukin-1 (IL-1)*, *inducible nitric oxide synthase* (*iNOS*) and subsequent changes in the concentration of nitric oxide (NO) released by meniscal tissue in response to compression were measured. Porcine meniscal explants were dynamically compressed for 2 h at 1 Hz to simulate physiological stimulation at either 10% strain or 0.05 MPa stress. Additional explants were pathologically stimulated to either 0% strain, 20% strain or, 0.1 MPa stress.
Results

iNOS and *IL-1* gene expression and NO release into the surrounding media were increased at 20% compressive strain compared to other conditions. Pathological unloading (0% compressive strain) of meniscal explants did not significantly change expression of *IL-1* or *iNOS* genes, but did result in an increased amount of NO released compared to physiological strain of 10%.

Conclusion

These data suggest that meniscectomies which reduce the surface area of the meniscus by 30–60% will increase the catabolic activity of the meniscus which may contribute to the progression of OA.

Key words: Fibrochondrocyte; Osteoarthritis; Mechanotransduction; Unconfined compression