Comparison of Two Models of SWCN Polymer Composites

G.M. Odegarda, R.B. Pipesb, P. Hubertc

aNational Institute of Aerospace, 144 Research Drive, Hampton, VA 23681
bUniversity of Akron, Akron, Ohio
cMcGill University, Montreal, Canada

Abstract

Two approaches for predicting elastic properties of SWCN/polymer composites, equivalent-continuum modeling and the self-similar approach, are presented and compared in terms of assumptions and ranges of validity. Both models incorporate information about molecular interactions at the nanometer length scale into a continuum-mechanics based model. It is shown that the two approaches can predict elastic properties of SWCN/polymer composites in a combined range spanning dilute to hyper-concentrated SWCN volume fractions. In addition, the predicted Young’s moduli for a SWCN/polymer composite determined using both approaches are shown to be consistent.

Keywords: Carbon nanotubes, volume fraction, representative volume element, helical array, lattice dynamics, molecular mechanics, elastic properties.