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The use of constitutive equations to describe the electromechani-
cal behavior of electrostrictive materials began over 100 years
ago. While these equations have been used to model a host of
ceramic-based and polymer-based electroactive materials, a fully
characterized model has not yet been developed to predict the
response of transversely isotropic polymer electrostrictives. A con-
stitutive model is developed within a thermodynamic and hyper-
elastic framework that incorporates the transversely isotropic ma-
terial symmetry that is present in many polymer-based
electrostrictives. The resulting constitutive model is characterized
for three electrostrictive polymer systems using empirical data
that are available in the literature. The model has a relatively
simple functional form that is easily adaptable to other polymer
electrostrictive material systems. �DOI: 10.1115/1.3173766�
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1 Introduction
Polymer-based electrostrictive materials became a focal point

of research for applications that require large magnitudes of ac-
tuation and significant weight-savings �1–23�. These applications
range from microelectromechanical systems �MEMS� to artificial
muscles. The use of these materials in engineering applications
requires accurate and flexible constitutive relations to relate loads,
deformation, electric displacement, and applied electrical field.

In the late 19th century and the early part of the 20th century,
several studies reported a relationship between the applied electric
field, stress field, and strain field for cylindrical condensers
�24–33�. In the middle portion of the 20th century, many scholars
studied the broader applications of electrostrictive materials and
established more specific definitions of electrostrictive behavior.
In 1941, Stratton �34� defined electrostriction as simply the elastic
deformation of a dielectric under the forces exerted by an electro-
static field. However, numerous authors �35–42� generally agreed
that electrostrictive materials exhibit a constitutive behavior that
can be described in a thermodynamic framework. More recently,
many studies employed this thermodynamic framework for elec-
trostrictive materials �43–56�.

The objective of this study is to establish a hyperelastic frame-
work for modeling polymer-based electrostrictive materials with
transverse-isotropic material symmetry. The resulting constitutive
model is characterized for three electrostrictive polymer systems
using empirical data that are available in the literature. The ther-

modynamic framework of the modeling approach is established
first followed by the characterization of material parameters.

2 Kinematics and Balance Laws
Consider a region of a material manifold R embedded in a

three-dimensional Euclidean space with its volume enclosed by
the surface �R. A material point of the region in its reference state
is located by its rectangular coordinate vector X at time t=0,
whose components are taken with respect to the mutually perpen-
dicular basis set e= �e1 ,e2 ,e3�. For any time t�0, the region de-
forms to the spatial configuration Rt with surface �Rt. The coor-
dinate of the material point in the spatial configuration is given by
the vector x. The coordinates in the reference and spatial configu-
rations are related by

x = ��X,t� �1�
The deformation gradient tensor is given by

FiK =
�xi

�XK
�2�

The right Cauchy–Green deformation tensor is defined as C
=FTF, whose eigenvalues are the squares of the principal stretches
associated with the deformation of Eq. �1�. The region is subjected
to an electric field vector denoted in R as the Lagrangian electric
field E.

Over R, the mass balance is

�̇ = 0 �3�

where the superposed dot indicates a material derivative and � is
the mass density of the material. The balance of linear momen-
tum, assuming static conditions and no body forces, is

div FS = o �4�
where div is the divergence operator with respect to the reference
configuration, S is the second Piola–Kirchhoff stress tensor, and o
is the null vector. The angular momentum balance of the system is
simply the proof of the symmetry of the second Piola–Kirchhoff
stress tensor.

S = ST �5�
These three balance principles can be easily established using
standard techniques �57,58�. The energy balance in the reference
configuration, which includes the energy of the electric field, is
�39,59–61�

− �U̇ + �1/2�S:Ċ + E · Ḋ + div Q + �h = 0 �6�

where U is the specific internal energy, D is the Lagrangian elec-
tric displacement vector, Q is the heat flux vector, and h is the
volumetric thermal heat source. It has been shown that E and D
are work conjugates for a deformable dielectric �62�. The second
law of thermodynamics for the reference configuration is �59�

��̇ −
1

�
div Q + � 1

�2	Q · grad � −
�h

�
� 0 �7�

where � is the temperature and grad is the gradient function with
respect to the reference configuration. The free energy of the sys-
tems is defined as �59�

� = U − �� − �1

�
	E · D �8�

The Clausius–Duhem inequality is established by substitution of
Eqs. �6� and �8� into Eq. �7�

− ���̇� + �̇� + �1/2�S:Ċ − Ė · D + �1

�
	Q · grad � � 0 �9�

Therefore, Eqs. �3�–�6� constitute 8 scalar field equations for 22
scalar quantities ��, S, x, D, �, �, E, and � with h prescribed�.
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